Chinese Journal of Material Research, 2017, 30(12): 940-946
doi: 10.11901/1005.3093.2016.152
ANPyO高温下热分解过程的分子动力学模拟*
Thermal Decomposition Behaviour of ANPyO at High Temperature by Molecular Dynamics Simulation
周心龙1, 刘祖亮1,, 王晓鸣2, 郑宇2, 施群荣1

摘要:

采用ReaxFF力场研究了凝聚相ANPyO在不同温度(T=1500 K、2000 K、2500 K、3000 K、3500 K)的热分解, 通过指数函数拟合势能演化曲线得到了平衡和诱导期以及整体反应时间和热解活化能Ea(88.65 kJmol-1)。结果表明, 晶胞中的ANPyO分子几乎完全分解时系统的势能开始显著衰减, 但是在不同的温度表现出不同的反应机理。在低温(1500 K≤T≤2000 K)下ANPyO热解的初始反应为—NH2 上H转移至ortho—NO2生成H2O和NO分子; 在高温(2500 K≤T≤3500 K)下热解的主要初始反应为C-NO2键的断裂和C—NO2→C—ONO重排布断裂产生NO2和NO。有限时间步长的产物识别分析结果表明, ANPyO热解的主要产物为H2O、N2、NO2、NO、CO2、CO、OH以及HONO。氧化性中间产物NO2、NO、OH以及HONO与NH2、H再次反应, 产生系统最稳定的产物H2O和N2, 从而使其分布显示出剧烈的波动特征。环上基团相互反应或直接脱落后主环间C-C和C-N才发生断裂, 一部分分解成CO2、CO和NO, 另一部分聚集生成碳团簇。

关键词: 材料科学其它学科 ; 热分解机理 ; ReaxFF ; ANPyO ; 分子动力学

Abstract:

The initial decomposition of the condensed phase ANPyO crystal at various temperature (T=1500 K、2000 K、2500 K、3000 K and 3500 K) were studied by using ReaxFF reactive molecular dynamics simulation. The time evolution curve of the potential energy can be described reasonably well by a single exponential function from which the initial equilibration and induction time as well as the overall characteristic time of pyrolysis were obtained. Afterward, the activation energy Ea (88.65 kJmol-1) also was obtained from these simulations. Result show when the ANPyO molecules in the unit cell almost decomposed, the potential energy of the system significantly attenuated. Meanwhile ANPyO showed different reaction mechanisms at different temperatures. At lower temperatures (1500 K≤T≤2500 K) the hydrogen from NH2 transferred to ortho—NO2 and promote C—NO2 bond fission, while the H2O and NO molecules formed. At very high temperatures 2500 K≤T≤3500 K), the C-NO2 homolytic cleavage and C—NO2→C—ONO rearrangement hemolysis are thermo dynamically favorable pathways in the early thermal decomposition of ANPyO. According to calculations using limited time steps, the main products are H2O、N2、NO2、NO、CO2、CO、OH and HONO. Secondary products are mainly NO2、NO、OH and HONO, which has strong oxidizing property, so that the distribution has a dramatic fluctuation characteristics. It is found that H2O and N2 are the main stable products of thermal decomposition. Pyridine ring fission does not take place until most of the attached groups have interacted or disconnected, and increasing temperature accelerates fission of Pyridine ring and further decomposition to generate both CO2, CO, NO, and amount of carbon-containing clusters.

Key words: other disciplines of ; the materials science ; high temperature thermal decomposition ; ReaxFF potencial energy ; ANPyO ; molecular dynamics

含能材料具有高能量和高密度, 能在短时内释放出大量的能量, 在国防和工业经济建设领域有广泛的应用。在外界热和冲击的激发下含能材料的组分发生化学反应, 原子重排使能级改变, 从而产生能量。近几十年来, 含能材料的实验和理论研究取得了较大进展。虽然科研人员采用激光等方式研究了凝聚相含能材料从初始状态到最终产物的复杂化学反应过程 [1], 并通过推理得到了凝聚相炸药的初始反应路径, 但是对极端状况下, 如冲击点火、高温高压分解、爆轰等化学反应过程知之甚少。为了深入研究极端条件下的含能材料化学反应细节, 科学家用分子动力学方法得到了在皮秒时间尺度和纳米空间尺度下的热分解产物的化学信息随时间的演化过程和能量释放的规律[2-4]。用分子动力学模拟方法能在原子、分子层次更深刻的认识凝聚相炸药的分解、燃烧和爆轰现象, 为实验提供可替代的方法。

2, 6-二氨基-3, 5-二硝基吡啶-1-氧化物[5] (通常简称ANPyO)是一种性能优良的耐热单质炸药, 其结构与TATB相似, 具有起爆感度低、耐高温等优点, 受到广泛的关注[6, 7]。成健等[8]研究了ANPyO炸药的合成新方法与性能, 王晓明等[9]研究发现, ANPyO可作为射流冲击不敏感战斗部的高能炸药。何志伟等[10, 11]用密度泛函(DFT)理论解释了ANPyO稳定性能, 发现ANPyO分子内的C—N(硝基)和N—O(氮氧化物)最弱, 受外界影响最易断裂。通过绝热分析实验研究[11]推导其分解过程热分解过程: 首先是吡啶环上相邻的—NH2和—NO2发生反应, 释放NO并形成凝聚相产物; 然后是凝聚相产物分解, 进一步释放出CO、HCN、CO2等气体。

近年来分子模拟逐渐兴起, 2001年加州理工大学Duin等[12]提出了一种描述化学反应过程中化学键断裂的ReaxFF反应力场。该力场保留了近似于量子力学的精确性, 可用于研究数百万原子构成的凝聚相系统下的化学反应。目前已用于计算极端条件下复杂化学反应过程, 如煤的热解[2, 13]、燃烧[16], RDX、TATB、HMX等含能材料热解和爆轰等[3, 14-16], 能在较大的时间尺度内提供实验和量子力学所不能给予的信息。目前关于ANPyO的热解机理的研究非常少, 而对与其结构极其相似的TATB研究[17-19]较多, 均使用ReaxFF力场进行热解分子动力学模拟。本文选用LAMMPS(large-scale Atomic/Molecular Massively Parallel Simulator)ReaxFF分子动力学模拟程序包, 研究ANPyO在高温下的反应机理, 旨在揭示温度对ANPyO分解产物及分布随时间变化的影响。

1 模拟方法和模型

本文使用的ANPyO来自X-射线衍射测试数据。这些数据与剑桥晶体数据一致。分子结构和晶胞参数, 如图1所示。为了便于统计分析和减少温度波动对体系热反应的影响, 构建含有72个ANPyO分子的1×3×4的超级晶胞模型, 共计有1440个原子。

图1 ANPyO单分子结构及晶胞结构

Fig.1 Molecular and crystal structure for ANPyO (gray, carbon; blue, nitrogen; red, oxygen; white, hydrogen)

先对ANPyO超级晶胞进行优化, 获得最小能量结构下的原子位置和晶胞参数, 然后通过NPT系综进行5ps的内部压力弛豫, 得到常温条件下(300 K)和0压力下系统的初始态。使用Berendsen thermostat和Berendsen barosat算法进行温度和压力调节, 使温度和压力在预定值附近波动。经过5ps的NPT-MD弛豫后急剧升温, 采用NVE系综使系统的温度急剧升高到1500、2000、2500、3000和3500 K, 模拟时间步长选取0.1fs, 总模拟时间为30 ps。

2 结果和讨论
2.1 势能演化过程和分解速率的分析

图2a给出了ANPyO晶胞在1500~3500 K不同温度条件下势能随时间(初始弛豫5 ps后的30 ps)的演化分布。经过初始平衡和诱导期后, 系统快速吸收热量发生初级分解反应, 使得系统内的势能升高。在随后的次级反应中, 得到中间及最终产物并放出大量的热, 使系统的势能衰减, 。温度越高, 系统达到化学反应动态平衡需要的时间越短。当晶胞中的ANPyO分子几乎完全分解时, 系统的势能开始明显衰减。图2b给出了ANPyO晶胞升至高温后体系物种随时间的分布情况。结合图2a可以看出, 在开始阶段 晶胞内均只有ANPyO一种物质, 随着温度的升高物种开始变化。在前5 ps, 温度上升得越高 晶胞分解产生新物质的速度越快, 且温度越高产生的新物质越多。当温度升高到1500 K时物种的数量十分有限(不超过10种), 基本上没有峰值; 当温度升高至2000 K时物种的变化缓慢上升, 在25 ps达到峰值; 当温度高于2500 K后在前10 ps内物种迅速增至约60~80种, 然后缓慢减少。

图2 系统的势能和在反应过程中总物种的时间演化分布

Fig.2 Time evolution of potential energy of the system (a) and total species during reaction (b)

综合图2a和b, 在各温度条件下系统内的物种数量达到峰值后快速分解产生的新物质相互转化, 各物质均保持近似数量且缓慢衰减。当系统处于较低温度1500 K时, 势能上升一定阶段后维持恒定, 物种少量增加, 表明基本上不再分解。当系统处于2000 K时势能和物种均缓慢上升, 分解较缓慢。当温度高于2500 K时物种的数量和势能均发生很大的变化, 物种达到峰值前系统势能快速上升, 物种数量开始衰减时势能亦随之下降。

系统的势能随着化学反应的进行而逐渐降低, 衰减速率随着放热反应的进行逐渐降低。势能的衰减速率与放热反应进程相关, 并强烈地依赖温度。这一过程可描述[19]

U ( t ) = U 0 + Δ U exp - ( t - t T - I ) τ (1)

其中U0为产物趋于平衡的渐进势能, ΔU为反应热, tT-1为分解反应进行前的平衡和诱导时间, τ为反应的整体特征时间。

假定在高温下ANPyO初始分解遵循Arrhenius定律[20], 温度对热解反应速率的影响可表示为

k = 1 τ = A exp [ E a RT ] (2)

式中, k为反应速率常数, τ为特征时间, Ea为活化能, A为指前因子, T为温度, R为标准摩尔气体常数。

由式(1)和(2)并结合图3指数函数, 可拟合势能演化曲线参数, 得到特征时间τ2500 K=11.1133 ps、τ3000 K=4.9337 ps、τ3500 K =3.3250 ps, 活化能Ea=89.56 kJmol-1, 常数A=6.848×1012 s-1。活化能的数值与TATB高温分解活化能[17]78.29 kJmol-1接近, 表明ANPyO非常钝感。

图3 ANPyO在2500~3500 K的初始反应速率常数的对数与温度倒数的关系

Fig.3 Logarithm of initial decomposition rate constant of ANPyO vs inverse temperature at 2500~3500 K

2.2 温度和势能对分解过程的影响

在低温1500 K时ANPyO分解极少, 本文重点讨论在高于2000 K条件下ANPyO的高温热解演变过程。图4给出了在不同势函数作用下ANPyO高温热解产物随时间的演化情况。从图4可以看出, 热解的主要产物为H2O、N2、NO2、NO、CO2、CO、OH以及HONO。在2000 K晶胞内的1440个ANPyO分子约在15 ps内分解完毕; 而当加热温度高于2500 K时完全分解时间缩短为5 ps以内, 表明温度对ANPyO的分解有显著的影响。—C—NO2是硝基芳香化合物中最弱的键, 通常的模拟结果也显示早期主要反应为—C—NO2直接断裂产生NO2, 或经—C—ONO重排后产生NO和小分子O。但是ANPyO分解的早期主要产物是N2和H2O, 可见产生的NO2和NO与—NH2或—NH作用, 使N2快速积累。而H2O的产生主要是—NH2上的H和ortho—NO2结合而脱水, 以及高温下直接脱落的OH、H、NO2等小分子相互作用形成水。CO2、CO产生量相对较少, 主要是C—C键(~418—628 kJmol-1)与C—N(~293 kJmol-1), O—N(~209 kJmol-1)和C—H(~414 kJmol-1)、N—O (389 kJmol-1)键相比, 具有较高的离解能。因此, 在环上基团相互反应或直接脱落后, 吡啶环上C—C键才发生断裂, 发生下一步的氧化反应产生CO2

图4 在2000 K、2500 K、3000 K和3500 K系统主要产物的演化曲线

Fig.4 Time evolution of main products for T=2000 K、2500 K、3000 K and 3500 K

在总体上, 当系统温度为2000 K和2500 K时主产物产量的顺序为H2O>N2>CO2; 而当系统温度为3000 K和3500 K时 主要产物产量顺序为N2> H2O> CO2; 这个特性与文献[18, 19]TATB的分解现象表现一致。这些结果说明, 低温分解过程主要始于吡啶环相连—NH2的H原子快速转移至相邻—NO2形成H2O; 何志伟通过热重与质谱联用、原位热裂解快速扫描傅里叶变换红外光谱等技术实验[11], 得到的ANPyO热分解历程也证实了这一点。而在高温分解时N2的生产逐渐增多, 与在高温下—C—NO2断裂优先H原子转移有关。

3.3 不同温度下主要产物对比分析及热分解机理探讨

ANPyO的高温分解, 其理想的化学分解过程为: C5H5O5N5 → 2.5H2O + 2.5N2 + 2.5CO + 2.5C。从图5中ANPyO在4种不同温度梯度下的对比分布曲线可见, H2O、N2产生的量约为ANPyO分子数的2倍, 已比较接近理论的2.5倍, 而CO以及CO2的产生量明显不足。据此可以推测, 碳主要以碳团簇的形式存在。

图5a、b可知, H2O和N2作为ANPyO分解的两种主要产物, 具有明显的分布特征。ANPyO在2000 K的分解历程, 主要为分子中—NH2上的H原子快速转移至ortho—N上, 形成带有HONO基团。该基团与ANPyO分子内相邻的—NH2上活性氢相互作用形成H2O, 促进NO的产生。特别是存在H、C5H4O5N5、C5H6O5N5等中间体, 表明在低温2000 K时ANPyO的初始分解有如图6所示的主要路径。

结合图5h、i及j可知, 当温度高于3000 K时NO2和NO的分布曲线具有相似的演化特点, 都表现出先增加后减少的趋势. 在各温度条件下 NO2产量达到峰值前的反应速率以及随后的衰减速率比NO快, 并且前者的产量略高于后者. 依据前文的分析, 作为非常活跃的中间产物, 在高温下—C—NO2先断裂产生NO2, 再与氢结合产生小分子NO和OH, 同时与脱落NH2反应产生N2和水。高温3000 K和3500 K的初始分解主要历程, 如图7所示。

图5 在四种不同温度下平均每个ANPyO分子产生的主要产物对比分布曲线

Fig.5 Comparative distribution curve of main products per ANPyO molecule for four high temperature

图6 ANPyO的低温分解起始反应历程

Fig.6 Initial steps of ANPyO decomposition at low temperature

图7 ANPyO的高温分解起始反应历程

Fig.7 Initial steps of ANPyO decomposition at high temperature

在整个反应过程中, CO2、CO的产量具有明显的分布特征。在低温2000 K时CO2、CO产生的量较少, 这与ANPyO分子中吡啶环结构比较牢固, 相对苯环结构更难打开, 有直接的关系。当温度上升至2500 K时CO2、CO开始放量增加, 随着温度的升高 两者产生的时间也明显提前, 且分布曲线也呈现出明显的波动特征。出现这些波动的原因, 可能是在高温条件下部分ANPyO分子中吡啶环发生断裂的时间提前, 断裂的小分子发生剧烈的碰撞, 从而聚合形成大分子含碳团簇。这种不稳定的分子团簇在NO2、OH、CO2等氧化氛围下发生氧化还原反应产生CO, 这是高温状态下CO的数量大于CO2的主要原因。

同时, 主要中间产物H、HCNO、NO2、NO、CO2、CO随温度时间演变均出现一定波动, 尤其是HCNO与OH频繁波动。据此推测, 这些分子受高温影响碰撞加速, 发生了相互转化反应:

CO + H 2 O C O 2 + 2 H

N O 2 + 2 H NO + H 2 O

HCNO NH + CO

NH + NO N 2 + OH

OH + H H 2 O

这些反应使H2O和CO2的数量保持在一个动态平衡的状态。N2作为主要的末端反应产物, 随着NO2产生和消耗 其产量逐渐增加, 而且中间温度越高这种现象越明显。

在模拟过程中产生大量的碳团簇, 图8选取了高中低温研究最终系统C—C键径向分布函数。在低温1500 K吡啶环尚未打开, C—C两原子间的径向分布函数产生的峰值主要集中在r =1.47×10-10 m和2.27×10-10 m处。当温度升高至3500 K时其径向分布函数峰值已移至1.37×10-10 m和2.13×10-10 m处, 可见在高温下C—C键更紧密, 说明形成了一定量的碳团簇。 文献[19]的研究表明富碳炸药在爆轰过程中产生碳团簇, 但是模拟结果表明尚未发现纯碳团簇。

图8 温度为1500 K、2500 K和3500 K的C—C键径向分布函数

Fig.8 Radial distribution of function g(r) of C—C bonds for T=1500 K、2500 K and 3500 K

3 结论

1. 本文的热分解产物和起始引发机理与之前的一些研究结论吻合, 说明ReaxFF力场具有实用性与正确性。

2. 温度越高ANPyO的分解达到平衡的时间越短, 热反应越完全, 势能下降得越多, 产物越多。热解的主要产物为H2O、N2、NO2、CO2以及中间产物H、OH、NO、CO、HONO等。各种产物的数量都不同程度地因温度的改变而变化。

3. 温度对ANPyO热解的影响很大, 且表现出不同的反应机理。低温热解的起始历程为—NH2上的H转移至—NO2上形成H2O。高温热解的起始历程为—C—NO2断裂、重排布, 生产N2。随着温度的上升ANPyO分子内环吡啶结构逐渐打开, 碳与氧碰撞几率增大, 形成的CO、CO2逐渐增多, 并产生大量的碳团簇。

4. ANPyO热解活化能较高, 表现出良好的钝感性能, 但是在真实热解、爆轰过程中系统受温度、压力以及冲击波的影响很大。

The authors have declared that no competing interests exist.

参考文献

1 Y. Q. Yang, S. F. Wang, Z. Y. Sun, D. D. Dlott, Propagation of shock-induced chemistry in nanoenergetic materials: The first micromete, J. Appl. Phys., 95(7), 3667(2004)
The propagation of shock-induced chemical reactions over nanometer distances is studied in energetic materials consisting of Al nanoparticles (30, 62, and 110 nm) in the polymer oxidizers nitrocellulose (NC) and Teflon. Picosecond laser flash heating vaporizes the Al particles, which react with surrounding oxidizer and generate a spherical shock wave with a rapidly dropping pressure, that decomposes the NC or Teflon out to a diameter d rxn . A methodology is developed to measure d rxn as a function of laser energy, that uses the average distance between nanoparticles d avg as a length scale and identifies the ablation threshold as occurring when the reaction spheres from multiple particles coalesce. At minimal laser fluences, d rxn is slightly larger than the diameter of the polymer sphere needed to just oxidize the nanoparticle. The excess diameter is attributed to the chemical energy of oxidation. At larger laser fluences where chemical energy is unimportant, d rxn 鈭滶 over the length scale of 50鈥1500 nm, where E is the energy in the spherical shock. Shock-induced chemical reactions propagate farther with larger nanoparticles and farther in Teflon than in NC. The linear dependence of d rxn on E is explained using a hydrodynamic model that assumes chemistry occurs when a pressureP is applied for a given time t, so that Pt= constant .
DOI:10.1063/1.1652250      URL     [本文引用:1]
2 F. Castro-Marcano, A. M. Kamat, M. F. Russo, A. C.T. van Duin, J. P. Mathews Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field, J. Combustion and Flame, 159(3), 1272(2012)
Coal or biomass chars are complex carbonaceous materials that are important energy sources for electricity production. Reactive molecular dynamics simulations are a useful tool to examine the chemical reactions occurring in complex processes, providing that a realistic structural representation and an applicable reactive force field can be utilized. Combustion of coal (or biomass) char is one such area were additional insight would be helpful for utilization enhancements and pollution control. In this investigation a devolatilized Illinois No. 6 coal char atomistic representation was generated, using Fringe3D and additional Perl scripts, coupled with the ReaxFF reactive force field for hydrocarbon combustion. Fringe3D facilitates the char structure generation process by producing a distribution of aromatic structures based on HRTEM lattice fringe image analyses. Perl scripts were used for incorporating heteroatoms and aliphatic components to aid elimination of investigator bias, and facilitate a more rapid construction process. The char structure was constrained by a combination of elemental and NMR literature data. Chemical and physical parameters were found to be broadly consistent with the experimental data. The ReaxFF force field for hydrocarbon combustion was used to perform simulations to examine the structural transformations and chemical processes associated with char combustion. In this initial work, very high temperatures (3000-4000 K) were selected for ReaxFF simulation under stoichiometric, fuel lean and rich combustion conditions. These elevated temperatures were chosen to observe chemical reactions proceed to completion within a computationally practical simulation time. Analyses indicated that char oxidation process was primarily initialized by either thermal degradation of char structure to form small fragments, that were subsequently oxidized, or by hydrogen abstraction reactions by oxygen molecules and 0 and OH radicals. A more rapid oxidation and combustion of the polyaromatic structures occurred at fuel lean (oxygen rich) conditions compared with fuel rich combustion. Char transitions included 6-membered ring conversion into 5- and 7-membered rings that further decomposed or reacted with mostly O and OH radicals. This work further demonstrates the utility of ReaxFF force field integration with representative char structural models to investigate physical and chemical transformations of char structure during combustion at high-temperature conditions. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
DOI:10.1016/j.combustflame.2011.10.022      Magsci     [本文引用:2]
3 L. C. Liu, C. Bai, H. Sun, W. A. Goddard, Mechanism and kinetics for the initial steps of pyrolysis and combustion of 1, 6-Dicyclopropane-2, 4-hexyne from ReaxFF reactive dynamics, J. Phys. Chem. A, 115(19), 4941(2011)
We report the kinetic analysis and mechanism for the initial steps of pyrolysis and combustion of a new fuel material, 1,6-dicyclopropane-2,4-hexyne, that has enormous heats of pyrolysis and combustion, making it a potential high-energy fuel or fuel additive. These studies employ the ReaxFF force field for reactive dynamics (RD) simulations of both pyrolysis and combustion processes for both unimolecular and multimolecular systems. We find that both pyrolysis and combustion initiate from unimolecular reactions, with entropy-driven reactions being most important in both processes. Pyrolysis initiates with extrusion of an ethylene molecule from the fuel molecule and is followed quickly by isomerization of the fuel molecule, which induces additional radicals that accelerate the pyrolysis process. In the combustion process, we find three distinct mechanisms for the O(2) attack on the fuel molecule: (1) attack on the cyclopropane, ring expanding to form the cyclic peroxide which then decomposes; (2) attack onto the central single bond of the diyne which then fissions to form two C(5)H(5)O radicals; (3) attack on the alkyne-cyclopropane moiety to form a seven-membered ring peroxide which then decomposes. Each of these unimolecular combustion processes releases energy that induces additional radicals to accelerate the combustion process. Here oxygen has major effects both as the radical acceptor and as the radical producer. We extract both the effective activation energy and the effective pre-exponential factor by kinetic analysis of pyrolysis and combustion from these ReaxFF simulations. The low value of the derived effective activation energy (26.18 kcal/mol for pyrolysis and 16.40 kcal/mol for combustion) reveals the high activity of this fuel molecule.
DOI:10.1021/jp110435p      PMID:21510658      URL     [本文引用:1]
4 X. F. Ma, W. H. Zhu, J. J. Mao, H. M. Mao, Molecular dynamics study of the structure and performance of simple and double bases propellants, J. Hazard. Mater., 156(1-3), 201(2008)
To investigate the structure and performance of simple and double bases propellants, the nitrocellulose (NC), nitroglycerin (NG), and double mixed system (NC+NG) have been simulated by using the molecular dynamics (MD) method with the COMPASS force field. The interactions between NC and NG have been analyzed by means of pair correlation functions. The mechanical properties of the three model systems, i.e. elastic coefficients, modulus, Cauchy pressure, and Poisson's ratio, etc., have been obtained. It is found that the rigidity, ductibility, and tenacity of the double bases propellants (NC+NG) are stronger than those of simple base propellants (NC), which attributes to the effect of NG and the strong interactions between NC and NG. The detonation properties of the three systems have also been calculated and the results show that compared with the simple base propellant (NC), the detonation heat and detonation velocity of the double base propellants (NC+NG) are increased.
DOI:10.1016/j.jhazmat.2007.12.068      PMID:18243539      URL     [本文引用:1]
5 H. Ritter, H. H. Licht, Synthesis and reactions of dinitrated amino and diaminopyridines, J. Heterocycl. Chem., 32(2), 585(1995)
Abstract Nitration of amino- and diaminopyridines and -picolines led, in unexpected one-step reactions, to dinitrated derivatives. Dinitropicolines gave styrylpyridines, and 2-amino-6-hydroxy-3,5-dinitropyridine was transformed by the thermolysis of its azido derivative into 5-amino-6-nitro[1,2,5]oxadiazolo[3,4- b ]pyridine. Using 1 H and 13 C nmr spectroscopy, azido-tetrazole tautomerism of 2-amino-6-azido-3,5-dinitropyridine and intramolecular hydrogen bonding at 20掳 for several 2-amino-3,5-dinitro-6- R -pyridines have been proved.
DOI:10.1002/jhet.5570320236      URL     [本文引用:1]
6 A. J.Bellamy FOX-7 (1, 1-diamino-2, 2-dinitroethene), Struc. Bond., 125, 1(2007)
ABSTRACT In this paper, the discovery and synthesis of the explosive 1,1-diamino-2,2-dinitroethene (FOX-7) are described, together with an account of its structural, spectroscopic, and explosive properties. The chemical reactivity of FOX-7 towards nucleophilic substitution (transamination), electrophilic substitution, and acid-base properties is explored, as is its thermal behavior (phase transformations and thermal decomposition). The molecular structure and physical properties of FOX-7 are compared with those of its three isomers (as yet unsynthesized), as derived by theoretical calculations. Finally, the physical properties of FOX-7 are compared to those of various energetic molecules that are structurally related to FOX-7.
DOI:10.1007/430_2006_054      URL     [本文引用:1]
7 MA Congming, LIU Zuliang, XU Xiaojuan, YAO Qizheng, Research progress on the synthesis of energetic pyridines, Chinese Journal of Organic Chemistry, 34, 1288(2014)
[本文引用:1]
(马丛明, 刘祖亮, 许晓娟, 姚其正, 吡啶类含能化合物的合成研究进展, 有机化学, 34, 1288(2014))
<p>吡啶类化合物在含能材料领域中的研究和应用较为广泛. 从分子结构出发,按照硝基吡啶、吡啶类含能离子盐和吡啶类含能配合物分类,综述了多种吡啶硝基衍生物的合成,并简单介绍了一些重要的硝基吡啶类含能化合物的特性及主要应用.</p>
DOI:10.6023/cjoc201402030      Magsci     URL    
8 CHEN Jian, YAO Qizheng, ZHOU Xinli, DU Yang, FANG Dong, LIU Zuliang, Novel Synthesis of 2, 6-Diamino-3, 5-dinitropyridine-1-oxide, Chin. J. Org. Chem., 17(11), 166(2008)
[本文引用:1]
(成健, 姚其正, 周新利, 杜扬, 方东, 刘祖亮, 2, 6-二氨基-3, 5-二硝基吡啶-1-氧化物的合成新方法, 有机化学, 17(11), 166(2008))
以2,6-二氨基吡啶为起始原料,经酰基化、氮氧化、硝化、水解 四步反应得到2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO),总收率为81%.讨论了影响酰基化、氮氧化、硝化等反应的因素,用1H NMR, MS和红外光谱对ANPyO及其中间体结构进行了表征.该方法是对文献[7]报道方法的进一步改进,提高了反应过程的安全性,后处理更加简单.
9 LIU Huaning, ZHENG Yu, QIU Congli, WANG Xiaoming, LI Wenbin, CHENG Bo, Experimental study on jet impact sensitivity of a new explosive 2, 6-diamino-3, 5-dinitropyridine-1-oxide, Chinese Jornal of Energetic Materials, 22(3), 337(2014)
[本文引用:1]
(刘华宁, 郑宇, 邱从礼, 王晓鸣, 李文彬, 程波, 新型炸药2, 6-二氨基-3, 5-二硝基吡啶-1-氧化物的射流冲击感度实验研究, 含能材料, 22(3), 337(2014))
为分析新型高能钝感炸药2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)的射流冲击感度,在口径为56mm的聚能装药和炸高为80mm条件下,进行了45#钢隔板覆盖下无围压炸药冲击起爆感度实验。用“Langlie法”获得了ANPyO临界起爆隔板厚度,用AUTODYN计算了临界头部速度和射流直径,标定了ANPyO的临界起爆阈值,并与8701炸药的试验结果作了比较。结果表明:临界爆轰时,8701炸药覆盖的45#钢隔板临界厚度约160mm,ANPyO炸药的临界隔板厚度约为68mm,比8701降低了约57.5%。ANPyO炸药的临界速度为3.7mm·μs -1 ,射流头部直径为4.8mm,临界冲击起爆阈值约为32.3mm3·μs -2 ,8701为7.16mm3·μs -2 ,ANPyO为8701炸药的4.5倍,可见ANPyO钝感于8701,是一种低射流起爆感度炸药。
10 Z. W. He, S. Q. Zhou, X. H. Ju, Z. L. Liu, Computational investigation on 2, 6-diamino-3, 5-dinitropyridine-1-oxide crystal, Struct. Chem., 21(3), 651(2010)
Density functional theory calculations were performed on crystalline 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO). The conduct bands are generally quite flat, while the valence bands are uneven. The carbon, oxygen and amino nitrogen atoms make up the narrow lower energy levels. While the carbon, amino nitrogen and atoms in nitro group make up the higher energy levels. Change of electronic charges for the decrease of the cell edge and are almost the same, but different from the decrease of the cell edge , indicating an anisotropic effect related to compressions. The C-Nitro and the N-O (-oxide) bonds are the weakest, and tend to rupture upon external stimulation. The Mulliken population for the N-O (-oxide) bond in crystal is much smaller than that in molecule, indicating that the molecular packing weakens this bond. Judged by the fact of N-O (-oxide) bond being weaker than C-Nitro bond, ANPyO is sensitive to mechanic impact than 1,3,5-triamino-2,4,6-trinitrobenzene, which is in good agreement with experiment. The crystal lattice energy is predicted to be 鈭166.03 kJ/mol, after being corrected for basis set superposition error.
DOI:10.1007/s11224-010-9594-x      URL     [本文引用:1]
11 HE Zhiwei, YAN Shilong, LIU Zuliang, Thermal decomposition characteristics of 2, 6-diamino-3, 5-dinitropyridine-1-oxide, Chin. J. Exp. Pro., 36(6), 51(2013)
[本文引用:3]
(何志伟, 颜事龙, 刘祖亮, 2, 6-二氨基-3, 5-二硝基吡啶-1-氧化物的热分解特性, 火炸药学报, 36(6), 51(2013))
用压力差示扫描量热法(PDSC)、热重-微商热重分析(TG- DTG)、热重与质谱联用(TG-MS)、热重与傅里叶变换红外联用技术(TG-FTIR)和原位热裂解快速扫描傅里叶变换红外技术(RSC-FTIR) 研究了2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)的热分解过程,获得了ANPyO的热分解动力学参数.推测了ANPyO的热分解机 理.结果表明,ANPyO的热分解过程分为两步:首先是吡啶环上相邻的-NH2和-NO2发生反应,释放NO并形成凝聚相产物;然后是凝聚相产物分解,释 放出CO、HCN、CO2等气体.
12 A. C. T.Van Duin, S. Dasgupta, F. Lorant, W. A. Goddard, ReaxFF: A reactive force field for hydrocarbons, J. Phys. Chem. A, 105(41), 9396(2001)
[本文引用:1]
13 G. Chevrot, A. Sollier, N. Pineau, Molecular dynamics and kinetic study of carbon coagulation in the release wave of detonation products, J. Chem. Phys., 136(8), 191(2012)
ABSTRACT We present a combined molecular dynamics and kinetic study of a carbon cluster aggregation process in thermodynamic conditions relevant for the detonation products of oxygen deficient explosives. Molecular dynamics simulations with the LCBOPII potential under gigapascal pressure and high temperatures indicate that (i) the cluster motion in the detonation gas is compatible with Brownian diffusion and (ii) the coalescence probability is 100% for two clusters entering the interaction cutoff distance. We used these results for a subsequent kinetic study with the Smoluchowski model, with realistic models applied for the physical parameters such as viscosity and cluster size. We found that purely aggregational kinetics yield too fast clustering, with moderate influence of the model parameters. In agreement with previous studies, the introduction of surface reactivity through a simple kinetic model is necessary to approach the clustering time scales suggested by experiments (1000 atoms after 100 ns, 10 000 atoms after 1 mu s). However, these models fail to reach all experimental criteria simultaneously and more complex modelling of the surface process seems desirable to go beyond these current limitations.
DOI:10.1063/1.3686750      PMID:22380052      URL     [本文引用:1]
14 S. Agrawalla, A. C. T.Van Duin, Development and application of a ReaxFF reactive force field for hydrogen combustion, J. Phys. Chem. A, 115(6), 960(2011)
To investigate the reaction kinetics of hydrogen combustion at high-pressure and high-temperature conditions, we constructed a ReaxFF training set to include reaction energies and transition states relevant to hydrogen combustion and optimized the ReaxFF force field parameters against training data obtained from quantum mechanical calculations and experimental values. The optimized ReaxFF potential functions were used to run NVT MD (i.e., molecular dynamics simulation with fixed number of atoms, volume, and temperature) simulations for various H(2)/mixtures. We observed that the (HO(2)) radical plays a key role in the reaction kinetics at our input conditions (T 鈮 3000 K, P > 400 atm). The reaction mechanism observed is in good agreement with predictions of existing continuum-scale kinetic models for hydrogen combustion, and a transition of reaction mechanism is observed as we move from high pressure, low temperature to low pressure, high temperature. Since ReaxFF derives its parameters from quantum mechanical data and can simulate reaction pathways without any preconditioning, we believe that atomistic simulations through ReaxFF could be a useful tool in enhancing existing continuum-scale kinetic models for prediction of hydrogen combustion kinetics at high-pressure and high-temperature conditions, which otherwise is difficult to attain through experiments.
DOI:10.1021/jp108325e      PMID:21261320      URL     [本文引用:1]
15 Q. An, S. V. Zybin, W. A. Goddard, A. Jaramillo-Botero, M. Blanco, S. N. Luo, Elucidation of the dynamics for hot-spot initiation at nonuniform interfaces of highly shocked materials, Phys. Rev. B, 84, 220101(2011)
The fundamental processes in shock-induced instabilities of materials remain obscure, particularly for detonation of energetic materials. We simulated these processes at the atomic scale on a realistic model of a polymer-bonded explosive (3,695,375 atoms/cell) and observed that a hot spot forms at the nonuniform interface, arising from shear relaxation that results in shear along the interface that leads to a large temperature increase that persists long after the shock front has passed the interface. For energetic materials this temperature increase is coupled to chemical reactions that lead to detonation. We show that decreasing the density of the binder eliminates the hot spot.
DOI:10.1103/PhysRevB.84.220101      URL     [本文引用:0]
16 J. Budzien, A. P. Thompson, S. V. Zybin, Reactive molecular dynamics simulations of shock through a single crystal of pentaerythritol tetranitrat, J. Phys. Chem. B, 113(40), 13142(2009)
Large-scale molecular dynamics simulations and the reactive force field ReaxFF were used to study shock-induced initiation in crystalline pentaerythritol tetranitrate (PETN). In the calculations, a PETN single crystal was impacted against a wall, driving a shockwave back through the crystal in the [100] direction. Two impact speeds (4 and 3 km/s) were used to compare strong and moderate shock behavior. The primary difference between the two shock strengths is the time required to exhibit the same qualitative behaviors with the lower impact speed lagging behind the faster impact speed. For both systems, the shock velocity exhibits an initial deceleration due to onset of endothermic reactions followed by acceleration due to the onset of exothermic reactions. At long times, the shock velocity reaches a steady value. After the initial deceleration period, peaks are observed in the profiles of the density and axial stress with the strongly shocked system having sharp peaks while the weakly shocked system developed broad peaks due to the slower shock velocity acceleration. The dominant initiation reactions in both systems lead to the formation of NO(2) with lesser quantities of NO(3) and formaldehyde also produced.
DOI:10.1021/jp9016695      PMID:19791817      URL     [本文引用:2]
17 A. Strachan, E. M. Kober, A. C. T.Van Duin, J. Oxgaard, W. A. Goddard, Thermal decomposition of RDX from reactive molecular dynamic, J. Chem. Phys., 122(5), 054502(2005)
We use the recently developed reactive force field ReaxFF with molecular dynamics to study thermal induced chemistry in RDX [cyclic-[CH2N(NO2)]3] at various temperatures and densities. We find that the time evolution of the potential energy can be described reasonably well with a single exponential function from which we obtain an overall characteristic time of decomposition that increases with decreasing density and shows an Arrhenius temperature dependence. These characteristic timescales are in reasonable quantitative agreement with experimental measurements in a similar energetic material, HMX [cyclic-[CH2N(NO2)]4]. Our simulations show that the equilibrium population of CO and CO2 (as well as their time evolution! depend strongly of density: at low density almost all carbon atoms form CO molecules; as the density increases larger aggregates of carbon appear leading to a C deficient gas phase and the appearance of CO2 molecules. The equilibrium populations of N2 and H2O are more insensitive with respect to density and form in the early stages of the decomposition process with similar timescales.
DOI:10.1063/1.1831277      PMID:15740334      URL     [本文引用:2]
18 J. Quenneville, T. C. Germann, A. P. Thompson, Molecular dynamics studies of thermal induced chemistry in TATB, Shock Compression of Condensed Matter, 955(1), 451(2007)
Abstract A reactive force field (ReaxFF) is used with molecular dynamics to probe the chemistry induced by intense heating (‘accelerated cook‐off’) of 1,3,5‐triamino‐2,4,6‐trinitrobenzene (TATB). Large‐system simulations are desired for TATB because of the high degree of carbon clustering expected in this material. Using small, 32‐molecule simulations, we calculate the reaction rate as a function of temperature and compare the Arrhenius‐predicted activation energy with experiment. Decomposition product evolution (mainly N2, H2O, CO2 and graphitic carbon clusters) is followed using a 576‐molecule larger simulation, which also illustrates the effect of system size on both carbon clustering and reaction rate.
DOI:10.1063/1.2833095      URL     [本文引用:1]
19 L. Zhang, S.V. Zybin, A.C.T.Van-Duin, S. Dasgupta, W. A. Goddard, Carbon cluster formation during thermal decomposition of octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7- tetrazocine and 1, 3, 5-triamino-2, 4, 6-trinitrobenzene high explosives from ReaxFF reactive molecular dynamics simulations, J. Phys. Chem. A, 113(40), 10619(2009)
[本文引用:3]
20 FU Xiancai, SHEN Wenxia, YAO Tianyang, HOU Wenhua, Physical Chemistry (Beijing, Higher Education Press, 2007) p.154
[本文引用:1]
(傅献彩, 沈文霞, 姚天扬, 侯文华, 物理化学 (北京, 高等教育出版社, 2007))p.154
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
材料科学其它学科
热分解机理
ReaxFF
ANPyO
分子动力学

other disciplines of
the materials science
high temperature thermal ...
ReaxFF potencial energy
ANPyO
molecular dynamics

作者
周心龙
刘祖亮
王晓鸣
郑宇
施群荣

ZHOU Xinlong
LIU Zuliang
WANG Xiaoming
ZHENG Yu
SHI Qunrong