Chinese Journal of Material Research, 2017, 30(12): 921-930
doi: 10.11901/1005.3093.2016.176
膨胀石墨/硬脂酸复合相变材料的相变动力学*
Phase Transformation Kinetics of Phase Change Materials of Expanded Graphite/Stearic Acid Composite
李云涛, 晏华, 汪宏涛, 王群

摘要:

以硬脂酸(SA)为相变材料, 以膨胀石墨(EG)为封装材料, 采用熔融共混法制备了硬脂酸/膨胀石墨复合相变材料(SA/EG-PCMs)。采用多重率DSC、SEM、FT-IR、TG等方法对SA/EG-PCMs的结构和性能进行表征, 应用非等温动力学数据处理模型进行了相变动力学研究。结果表明: EG具有大量网状结构的空洞(由10~50 μm厚的石墨片叠合而成的平行塌陷片层构成), 通过表面吸附和微孔束缚对硬脂酸进行有效封装, 使其颗粒粒径减小; 根据相变动力学分析, EG对SA分子链段的热扩散运动具有限制作用, 使SA/EG-PCMs的活化能均高于纯SA(E为535.55 kJ/mol), 热稳定性提高; 且随着EG含量的提高SA/EG-PCMs的活化能逐渐增大, 当EG含量(质量分数, 下同)高于10%时EG对SA分子链端的阻碍作用加剧, 使复合体系的相变温度和相变焓下降的幅度增大。

关键词: 复合材料 ; 复合相变材料 ; 膨胀石墨 ; 硬脂酸 ; 相变动力学

Abstract:

Phase change materials of expanded graphite/stearic acid composite (SA/EG-PCMs) were prepared by melt-blending method with stearic acid (SA) as phase change material and expanded graphite (EG) as packing material. The structure and property of SA/EG-PCMs were characterized by SEM, FT-IR, TG and the DSC of multi rate, and their phase transformation kinetics was studied by the model of data processing of non-isothermal kinetics. The results show that there exist a lot of holes with network structures within EG, which were composed of parallel and collapsed laminas of stacked thinner graphite of 10~50 μm, with which SA was packaged thereby, the resulted particle size of SA/EG-PCMs was decreased. According to the analysis of the phase transformation kinetics, EG might play certain role in hindering the thermal migration of the molecular chains of DA; the activation energy of SA/EG-PCMs was higher than that of the pure SA (E is 535.55 kJ/mol), indicating the higher thermal stability of the former; With the increasing EG content, the activation energy of SA/EG-PCMs increased gradually, as the EG content over 10%, the blocking effect of SA/EG-PCMs on the migration of molecular chain of SA increased much more obviously, and which enable the dissension of the phase transition temperature and phase change enthalpy to be enlarged.

Key words: composite ; composite phase change materials ; expanded graphite ; stearic acid ; phase transformation ; kinetics

相变材料(Phase change materials, PCM)是利用相态改变时吸/放热的特性实现能量存储/释放的一种新型功能材料, 具有相变潜热高、化学性质稳定等特点。相变材料利用本身的相变调控体系热量, 达到温度控制、节能保温等目的, 在电池热管理、建筑节能、航空航天、通讯、电力等领域应用广泛[1-3]。如何对其性能进行有效的改善和利用, 已成为能源和材料领域的研究热点。硬脂酸作为性能优异的相变材料, 具有相变潜热高、性能稳定、无腐蚀、无过冷及析出现象等优点[4, 5]。但是当环境达到相变温度时硬脂酸发生固-液相变, 导致泄漏并使其稳定性下降, 影响相变材料的使用效率。为了改善硬脂酸相变时的稳定性, 满足实际工程应用, 必须将相变材料进行封装, 以提高其稳定性。膨胀石墨(Expanded graphite, EG)是一种具有疏松多孔蠕虫状结构的新型功能碳素材料, 具有较大的回弹性、较高的导电导热性和较强的吸附性等性能[6, 7], 与相变材料的结合能解决相态变化时的泄露, 提高其稳定性和热效率。同时, 复合体系的相变温度、相变焓及微观结构等热物性能都发生了变化, 从理论上对其相变过程和稳定性的判断提供科学的依据显得十分重要和迫切。近年来, 许多学者进行了大量的相关研究。王芳等[8]在丙烯酰胺聚合反应中加入聚乙二醇制备出聚乙二醇(PEG)/聚丙烯酰胺(PAAm)复合相变材料, 采用不同速率的非等温DSC技术对其进行了相变动力学研究, 计算了相变过程的活化能和反应级数。结果表明, 在其它条件不变的情况下, 随着升温速率的提高复合相变材料的峰温移向高温, 且峰面积增大。张磊[9]研究了聚乙二醇基复合储热材料的相变动力学, 发现纳米石墨片(GnPs)对聚乙二醇分子的热运动具有限制作用, 使复合体系的活化能增加。

图1 制备SA/EG-PCMs流程示意图

Fig.1 Preparation process diagram of SA/EG-PCMs

综上所述, 深入研究复合体系的动力学过程, 能为复合体系的工作机理和性能优化等实际应用提供理论依据。本文采用熔融共混法将硬脂酸嵌入膨胀石墨的层间结构中, 制备硬脂酸/膨胀石墨复合相变材料, 研究其相变动力学。

1 实验方法
1.1 实验用材料

硬脂酸: 相变点为54~57℃, 相变潜热为100~200 kJ/kg; 可膨胀石墨: 膨胀率210 mL/g。

1.2 复合相变材料的制备

将大约1.8 g鳞片状石墨放入一圆形铁盒中并使其均匀分散。然后将圆形铁盒放入到800℃电阻炉中20 s后取出, 制得膨胀石墨。将适量的硬脂酸加入到烧杯中, 在KDM型控温电热套中进行加热融化。将高温膨胀过的石墨加入到硬脂酸融化液中, 均匀搅拌; 将系统降温并继续搅拌, 待冷却至室温后得到硬脂酸/膨胀石墨复合相变材料。控制膨胀石墨的含量为硬脂酸质量的0、5%、10%、15%、20%, 将不同类型的复合相变材料试样分别编号为S1、S2、S3、S4、S5, 制备流程如图1所示。

1.3 测试和表征

用S-3700N型扫描电子显微镜对硬脂酸/膨胀石墨复合相变材料的微观结构进行表征分析。用STA449C型热分析仪对复合相变材料进行综合热分析, 升温速率为10℃/min, 以氮气作保护气, 测试范围为30~400℃, 颗粒状样品质量为8 mg左右。用404F3差示扫描量热仪(DSC)对复合相变材料进行热分析, 在保护气氮气条件下从30℃分别以3、5、8、10℃/min的速率升至85℃, 颗粒状样品质量为6 mg左右。 用6700型傅里叶红外光谱仪进行结构分析, 样品为复合相变材料与溴化钾混合研磨后压片, 反射晶体为ZnSe, 入射角45°, 扫描次数32次, 分辨率4 cm-1

测试热循环稳定性能: 将适量的SA/EG-PCMs置于滤纸上, 然后放入100℃的电热鼓风烘箱中加热, 之后迅速冷却。如此冷热循环10次, 比较复合相变材料发生的结构变化。

1.4 相变动力学

1.4.1 相变动力学的方程 对于常见的相变反应, 非均相体系在等温与非等温条件下的两个常用动力学方程式为[10]

d α / d t = A exp ( - E / RT ) f ( α ) (等温),

d α d T = A β f ( α ) exp ( - E / RT ) (非等温)

式中, A为表观指前因子; E为表观活化能; R为通用气体常数; t为时间; α为在t时物质A已反应的分数; f(α)为反应机理函数的微分形式; β为加热速率(Kmin-1)。

图2a给出了常见相变反应过程的DSC曲线, α 值等于Ht/H0, Ht为物质A′在某时刻的反应热, 即DSC曲线下部分的面积, H0为反应完成以后物质A′的总放热量, 相当于DSC曲线下的总面积[11], 进而求解出能描述相变反应的上述方程中的EAf(α), 以判断相变反应的难易程度及机理。

1.4.2 动力学分析法[11] Kissinger法是非等温相变动力学数据处理中较常用的方法之一。该方法假设相变反应的机理函数为 f ( α ) = ( 1 - α ) n , 相应的动力学方程则可表示[12]

d α d t = A e - E / RT ( 1 - α ) n (1)

将式1两边微分得

d d t d α d t = A ( 1 - α ) n d e - E / RT d t + A e - E / RT d ( 1 - α ) n d t = d α d t E d T d t R T 2 - An ( 1 - α ) n - 1 e - E / RT (2)

DSC曲线的峰温TP处的一阶导数为零, 对应的边界条件为

d d t d α d t = 0 (3)

将式(3)带入式(2)得

E d T d t R T P 2 = An ( 1 - α p ) n - 1 e - E / RT (4)

研究表明, n ( 1 - α P ) n - 1 与升温速率 β 无关, 其值近似等于1, 因此式(4)可变换为

R T P 2 = A e - E / R T P (5)

将式(5)两边取对数即得到Kissinger近似方程

ln β T P 2 = ln AR E - E R 1 T P (6)

方程(6)中β为升温速率, TP为相变峰温, R为定值常数。由此式可知, ln(β/TP2)与(1/TP)成线性关系。根据此式以及DSC曲线的速率β和峰温TP进行线性回归计算, 得到相应的斜率、截距和相关系数。根据直线的斜率求E, 根据截距求A

图2 相变材料反应过程的DSC曲线和峰形指数

Fig.2 The DSC curve of the phase change process (A) and DSC curve of peak index (B)

根据峰型指数进行计算相变反应级数S。峰型指数S定义为DSC曲线拐点处切线到峰顶的垂线距离的比值(图2b)

S = a b , 相变反应级数 n = 1.26 S 1 2

其中, a, b为曲线拐点外切线到峰顶的垂线距离(图2B)。

2 结果和讨论
2.1 EG和SA/EG-PCMs的微观形貌

图3给出了EG、SA/EG-PCMs的微观形貌图, EG是碳质元素结晶矿物, 它的结晶格架为六边形层状结构, 层与层之间相隔340 pm, 距离较大, 是以范德华力结合起来。从图3a可见, EG的外观形貌呈蠕虫结构, 每个石墨蠕虫由多个微胞相互连接而成, 在内部有大量独特的网络状微孔结构, 由约10~50 μm厚的石墨片叠合而成的平行塌陷片层构成, 具有良好的吸附、包覆性能。比较图3中S1、S2、S3、S4、S5组的SEM图, 可见EG吸附硬脂酸后依然保持了原来的蠕虫状形态。当EG含量为5%时EG表面裸露的硬脂酸较多, 在较高温度下硬脂酸容易析出, 热稳定性不好。随着EG含量的提高EG表面的硬脂酸逐渐减少, EG含量达到10%时EG吸附量基本为饱和状态, 内部充满了硬脂酸, 在其表面没有出现块状或条状硬脂酸团。EG能将硬脂酸牢牢吸附, 并使硬脂酸呈现颗粒状的分散状态, 保持了结构的完整性和稳定性[13]

图3 EG、SA/EG-PCMs的微观形貌

Fig.3 SEM images of EG (a), S1 (b), S2 (c), S3 (d), S4 (e), S5 (f)

2.2 SA/EG-PCMs的组成与结构

图4给出了硬脂酸/膨胀石墨复合相变材料的红外光谱。对比分析表明[14], EG的最大的吸收峰在3600~3300 cm-1, 1618 cm-1是石墨碳骨架的振动吸收峰; 1709 cm-1处为强吸收尖峰, 是羟基中C=O伸缩振动吸收谱带, 它是二缔合硬脂酸由于氢键影响向低波数移动的典型吸收峰。由氢键形成的双分子缔合体, 其吸收峰常与硬脂酸中的C-H键伸缩振动峰重叠。1414 cm-1为-OH面内弯曲振动强吸收峰, 940 cm-1为-OH外表面弯曲振动强吸收峰, 可以作为进一步确定存在-COOH结构的依据。在3200~2500 cm-1处的吸收峰宽而散, 以3000 cm-1为中心, -OH在2700~2500 cm-1有几个小吸收峰。在此区域其他峰很少出现, 可用来判断硬脂酸的存在。2957 cm-1和2919cm-1分别是-CH3的不对称和对称伸缩振动吸收峰, 2847 cm-1对应-CH2-伸缩振动吸收峰, 2854 cm-1对应不对称伸缩振动吸收峰-CH2-。比较发现, 随着EG掺量的增加硬脂酸图谱与复合相变材料红外图谱的出峰位置和峰形几乎没有变化, 只是发生峰高的变化。这表明没有新官能团的产生, 只是官能团的含量发生变化, 说明硬脂酸和EG之间为物理结合, 没有发生化学反应生成新物质, 两者具有良好的相容性, 保持了各自的优良性能。

图4 SA、SA/EG-PCMs的红外光谱分析图

Fig.4 FT-IR spectra of SA and SA/EG-PCMs

2.3 SA/EG-PCMs的相变动力学

2.3.1 SA/EG-PCMs的DSC曲线 图5给出了升温速率不同、EG含量不同的SA、SA/EG-PCMs的DSC曲线。从图5可见EG含量不同的SA/EG-PCMs在不同升温速率(β)下的初温(T0)、峰温(TP)、终温(Tf)、相变温度(Tr)及相变潜热值H, 其DSC分析数据列于表1。从图4和表1可以看出, SA、SA/EG-PCMs在63℃左右有一较大的吸热峰, 是硬脂酸的相变吸热峰。SA/EG-PCMs在不同升温速率下的相变温度变化趋势与SA类似, 略低于SA在不同升温速率下的平均T0。随着升温速率的提高, 对于同一EG含量的复合相变材料, 升温速率越高则峰温越高, 吸热峰型越宽, 并且相变过程稍微向高温方向偏移。其主要原因是, 在较高的升温速率下, 由于热传递滞后硬脂酸分子链段来不及扩散脱离结晶体。随着膨胀石墨含量的提高SA/EG-PCMs相变潜热值H减小, 相变温度和峰温降低。

表1 不同EG含量的复合相变材料在不同升温速率(β)下初温(T0)、峰温(TP)、及终温(Tf)、相变温度(Tr)以及相变潜热H
Tabel 1 T0, TP, Tf, H of SA/EG-PCMs with different mass fraction of EG in different heating rate β
EG(%, mass fraction) β(K/min) T0(K) Tp(K) Tf(K) Tr(K) H(J/g)
0 3 298.6 338.2 341.4 333.4 181.4
5 297.6 339.1 342.7 332.5 184.1
8 297.3 340.3 345.4 333.5 186.6
10 296.9 341.7 347.1 333.7 182.5
5 3 298.3 337.3 338.9 331.7 171.5
5 298.1 338.1 342.0 331.6 170.1
8 297.6 339.1 345.0 332.1 168.4
10 297.9 339.6 345.6 332.4 170.6
10 3 299.1 336.0 336.5 331.1 157.6
5 298.6 336.7 338.2 330.5 159.9
8 298.4 337.6 341.2 331.2 160.1
10 298.7 338.4 342.6 331.7 161.6
15 3 299.6 335.8 336.2 330.5 148.4
5 297.3 336.4 338.1 330.7 147.1
8 297.9 337.1 340 330.9 146.3
10 298.1 337.6 341.2 331.2 147.5
20 3 299.7 335.4 335.6 329.4 135.4
5 299.3 335.9 337.4 330.7 135.2
8 298.2 336.6 339.3 331.2 134.9
10 298.6 337.1 340.1 331.4 135.4

表1 不同EG含量的复合相变材料在不同升温速率(β)下初温(T0)、峰温(TP)、及终温(Tf)、相变温度(Tr)以及相变潜热H

Tabel 1 T0, TP, Tf, H of SA/EG-PCMs with different mass fraction of EG in different heating rate β

图5 升温速率不同的SA、SA/EG-PCMs的DSC曲线

Fig.5 DSC curves of SA and SA/EG-PCMs in different heating rates (a) 0%, (b) 5%, (c) 10%, (d) 15%, (e) 20%, (f) the variation of Tr, TP, Tf, H

根据混合物理论[15]进一步验证, 将纯SA的相变潜热与SA质量分数的相乘得到SA/EG-PCMs的相变潜热: Δ H C = ( 1 - φ ) Δ H m , 式中 Δ H C Δ H m 分别为SA/EG-PCMs和纯SA的相变潜热; φ 为膨胀石墨的质量分数。计算结果表明, 随着EG含量的提高SA/EG-PCMs的相变潜热H减小, 与理论计算值相当。当EG含量高于10%时减小的幅度增大, 当EG的含量为20%时SA/EG-PCMs的相变潜热H为理论值的90.7%。这些结果表明, 在复合材料体系中, EG作为无机异质相对SA的相变行为产生了较大的影响。

2.3.2 SA/EG-PCMs的相变动力学参数 用Kissinger法(6)式分别求出EG含量为0~20%的SA/EG-PCMs的活化能值E和决定系数R2, 结果列于表2。从表2可知, 随着EG含量的提高SA/EG-PCMs的活化能值逐渐增大, 表明低SA含量的SA/EG-PCMs具有较高的活化能。采用波尔兹曼模型对EG含量与活化能值数据进行非线性拟合, 模型方程为 y = A 2 + ( A 1 - A 2 ) / ( 1 + exp ( ( x - x 0 ) / d x ) , 拟合曲线参数为: A1=360.96031, A2=37634.497, x0=87.63054, dx=16.37116, 决定系数R2=0.99934, 拟合情况如图6所示。

表2 SA/EG-PCMs的活化能值E和决定系数R2
Table 2 Values of E and R2 of SA/EG-PCMs with different mass fraction of EG
EG/%, mass fraction 0 5 10 15 20
E(kJ/mol) 535.55 599.81 685.59 793.92 951.36
R2 0.99514 0.96503 0.98253 0.99412 0.99154

表2 SA/EG-PCMs的活化能值E和决定系数R2

Table 2 Values of E and R2 of SA/EG-PCMs with different mass fraction of EG

图6给出了各组试样ln(β/TP2)与(1/TP)的关系曲线和活化能。从图6可见, 各组复合相变材料的活化能均比纯SA的高。这说明, 与纯SA相比, 复合相变材料发生固-液相变的难度提高了。其原因是, 基体材料膨胀石墨交联形成的网状结构对SA分子链段的热扩散运动有一定的限制, 使相变反应的阻力增加[16], 从而使复合体系的相变活化能升高。EG的含量越高对SA分子链段的阻碍作用就越强烈, 复合相变材料的相变活化能就越高, 对复合体系相变温度与相变焓的影响就越明显。这与DSC分析的结果一致。

图6 ln(β/TP2)与(1/TP)的关系曲线和活化能

Fig.6 Plot ln(β/TP2) versus 1/Tp (a) and activation energy (b)

表3和图7分别给出了SA与EG相互作用的类别及机理。根据分析, 膨胀石墨的结构和表面极性、表面含氧基团等物化特性对SA分子链端的热扩散运动均有较大的影响。一方面, 膨胀石墨表面有-C=O、-C-O-、-O-O-等功能基团, 与SA分子链段形成氢键(图7所示)及其表面吸附作用, 对SA的分子链端的热扩散运动产生阻碍作用; 另一方面, EG丰富的微米级网状孔洞结构形成大量的受限空间, 产生的毛细管作用力对SA分子链段的热扩散运动也有较强的阻碍作用。综上所述, EG通过表面吸附和微孔束缚对SA进行吸附和封装, 使复合体系活化能的增加, 热稳定性提高。根据上述结果, 含量小于10%的EG对复合相变材料相变热物性能的负面影响较小。

表3 SA与EG的相互作用
Table 3 Interactions between SA and EG
Influence factor Micropore binding Surface adsorption
SA/EG-PCMs Micropore binding Specific surface area Surface polarity Hydrogen bond

表3 SA与EG的相互作用

Table 3 Interactions between SA and EG

图7 EG与SA相互作用的机理图

Fig.7 Schematic of the interaction of SA with EG

2.3.3 相变反应级数 当升温速率为8℃/min时, S1的峰形指数S=a/b=1.6/2.8=0.57, 相变反应级数n=1.26S1/2=1.26×0.571/2=0.95。按照相同的方法分别求出S1、S2、S3、S4、S5在不同升温速率下的相变反应级数, 结果列于表4。由表4可见, 对于不同的升温速率, 复合相变材料随着膨胀石墨含量的提高反应级数呈现增大的趋势。对于同一复合相变材料, 随着温度速率的提高反应级数增大, 且不同复合相变材料的反应级数均约为1。这说明复合相变材料的相变反应是按一级反应进行的。

表4 不同升温速率下SA/EG-PCMs固-液相变的反应级数
Table 4 Reaction order of SA/EG-PCMs in the solid-liquid change under different heating rates
Heating rate/℃min-1 Reaction order (n)
S1 S2 S3 S4 S5
3 0.90 0.90 0.92 0.93 0.95
5 0.92 0.93 0.96 0.96 0.98
8 0.96 0.97 0.99 0.99 1.03
10 1.03 1.07 1.06 1.10 1.14

表4 不同升温速率下SA/EG-PCMs固-液相变的反应级数

Table 4 Reaction order of SA/EG-PCMs in the solid-liquid change under different heating rates

2.4 综合热分析

图8给出了硬脂酸/膨胀石墨复合相变材料的TG-DTA曲线, 图8a为热失重曲线, 图8b为热失重微分曲线, 图8c为热流曲线。由图8可知, SA/EG-PCMs初始失重温度大约为130℃, 主要失重区间为160~300℃, 失重比例与硬脂酸的含量相当, 大约250℃时的分解速率达到最大, 在300℃基本分解完全。随着膨胀石墨含量的提高复合相变材料的初始失重温度明显延后, 失重区间延长, 且失重速度减慢, 失重峰温度逐渐升高。这表明, 复合相变材料的膨胀石墨使其热稳定性提高。其原因是, 膨胀石墨巨大的比表面积和自身良好的热稳定性将SA与热源分开; 另一方面, 膨胀石墨的蠕虫状网络结构限制SA链的运动, 具有较强的束缚能力, 把硬脂酸固定, 对硬脂酸的挥发有一定的抑制[17]。同时, 两者在熔融状态下的结合过程中, 界面的分子排列也发生一定的变化, 两者的共同作用使硬脂酸在更高的温度才能摆脱膨胀石墨的束缚, 使分解温度升高。这与SA/EG-PCMs的相变动力学分析的结果一致。

图8 SA/EG-PCMs的热分析

Fig.8 Thermal analysis of SA/EG-PCMs, (a) TGA curve, (b) DTG curve, (c) DSC curve

2.5 热循环稳定性分析

图9给出了SA/EG-PCMs在25℃和120℃条件下冷热循环前后的红外光谱图。可以看出, 图9给出的结果与红外光谱图基本一致, 主要基团C=O的特征吸收峰波数为1716 cm-1, 3000~2200 cm-1区间存在宽而散的吸收峰为-OH基团伸缩振动吸收峰, 2925 cm-1附近对应的是C-H伸缩振动吸收峰, 1465 cm-1附近对应的是C-H面内弯曲振动吸收峰, 720 cm-1为(CH2)n面内摇摆振动弱吸收峰。SA/EG-PCMs经过冷热循环后, 主要基团特征吸收峰都在, 其位置、强度、峰形几乎没有变化。这表明没有新官能团的产生, 说明SA/EG-PCMs在冷热循环过程中没有发生分解等作用生成新的物质, 硬脂酸的分子结构没有发生变化。其原因是, 硬脂酸分子间形成双分子排列的二缔合结构, 硬脂酸的羟基和甲基末端基团都在平行的平面内(图10)。升温时晶体沿着甲基间的面断开, 随着不断的溶化分子间开始以分子对形式发生缔合, 十分牢固的缔合在冷热循环过程中不易破坏。由于甲基间的作用力为定值, 不受冷热循环次数影响, 因此SA/EG-PCMs在冷热循环后仍保持稳定的分子结构和较高的热效率, 保持了良好的长期热稳定性。

图9 SA/EG-PCMs在冷热循环前后的红外光谱图

Fig.9 FT-IR spectra of SA/EG-PCMs in hot and cold cycles, (a) S2, (b) S3, (c) S4, (d) S5

图10 硬脂酸结晶分子层

Fig.10 Molecular layer of stearic acid insolid

3 结论

1. 在硬脂酸/膨胀石墨复合相变材料(SA/EG-PCMs)中, EG通过微孔束缚和表面吸附与SA物理结合, EG表面吸附作用和丰富的微米级孔形成大量的受限空间阻碍SA分子链段的热扩散, 对硬脂酸(SA)进行吸附和封装, 使其呈现固体颗粒状态, 热稳定性提高。

2. 随着EG含量的提高SA/EG-PCMs的活化能增大, 均比纯SA的高, 使复合体系的相变阻力增大。其固-液相变反应的级数均约为1, 说明SA/EG-PCMs的相变反应是一级反应。当EG含量不低于10%时活化能增大的幅度提高, 说明对SA分子链段的热扩散运动的限制增大。应控制EG的含量不高于10%, 以减小EG对复合体系热物性能的负面影响。

3. 加入EG使SA/EG-PCMs的失重温度延后, 失重区间延长, 失重速率减慢, 具有较高的热循环稳定性。随着EG含量的提高SA/EG-PCMs的活化能不断增大, 表明EG对SA分子链段的阻碍作用更强烈, 使复合相变体系相变温度与相变焓下降的幅度增大。

The authors have declared that no competing interests exist.

参考文献

1 Chcralathan M, Vclraj R Rcnganarayanan S, Heat transfer and parametric studies of an encapsulated phase change material based cool thermal energy storage system, J. Zhejiang Univ. Sci. A, 7(11), 1888(2006)
[本文引用:1]
2 Ho C J, Gao J Y, Preparation and thermophysical properties of nanoparticlein-paraffin emulsion as phase change material, Int. Commun. Heat. Mess Trans., 36(5), 468(2009)
In this study, phase change material (PCM) embedded by nanoparticles was prepared by emulsifying alumina (Al 2 O 3 ) nanoparticles in paraffin (n-octadecane) by means of a non-ionic surfactant. The formulated nanoparticle-in-paraffin emulsions contain the nanoparticles of 5wt.% and 10wt.%, respectively; their effective thermophysical properties, such as latent heat of fusion, density, dynamic viscosity, and thermal conductivity, were investigated experimentally. The experimentally measured density of the emulsions agrees excellently with that predicted based on the mixture theory. The measured thermal conductivity and dynamic viscosity for the nanoparticle-in-paraffin emulsions formulated show a nonlinear increase with the mass fraction of the nanoparticles compared with that for the pure paraffin, depending on the temperature.
DOI:10.1016/j.icheatmasstransfer.2009.01.015      URL     [本文引用:0]
3 Ince S, Seki Y, Ezan M A, Thermal properties of myristic acid/graphite nanoplates composite phase change materials, Rnenwable Energy, 75, 245(2015)
Myristic acid-graphite nanoplates (MA/Gr) composite phase change materials were prepared and thermal properties at various Gr loadings, 0.5%, 1% and 2%, were investigated. Melting and freezing temperatures, latent heats of melting and freezing, the extent of supercooling and the crystallization fraction were obtained with respect to the Gr loadings. It is observed that the Gr loading does not affect the crystallization fraction, but decreases the extent of supercooling. The effect of Gr loading on thermal stability and functional groups of myristic acid was determined by thermogravimetric and Fourier transform infrared analyses, respectively. Thermal conductivity of Myristic acid increased by 8%, 18% and 38% after Gr loadings of 0.5%, 1% and 2% into MA, respectively. Thermal cycling test was also conducted at various thermal cycles (1, 10, 40, 70 and 100 cycles). Repeated melting/freezing cycles have no significant effect on the thermal properties and chemical stability of MA/Gr composites.
DOI:10.1016/j.renene.2014.09.053      URL     [本文引用:1]
4 He Hongtao, Yue Qinyan, Gao Baoyu, The effects of compounding conditions on the properties of fatty acids eutectic mixtures as phase change materials, Energy Conversion Management, 69, 117(2013)
This work was focused on investigating the effects of compounding conditions on the properties of fatty acids eutectic mixtures as phase change materials (PCMs), and the binary eutectic mixtures of stearic acid (SA) and myristic acid (MA) were selected as representative. The melting points of SA-MA mixtures with varying combination proportions were tested to determine eutectic ratio. Adopting heating-ultrasonic method, the SA-MA mixtures with eutectic ratio were blended under different conditions to obtain a series of eutectic mixtures, and then their thermal properties and chemical structures were analyzed by differential scanning calorimetry (DSC) and Fourier transform infrared (FT-IR), respectively. The results showed that the eutectic mass ratio of SA to MA was 36鈥64%; within certain time range, more heating time can result in lower melting point, but not the longer, the better; when the heating temperature increased, the melting point of eutectic mixture had a little irregular change, but the melting time of solid mixture obviously reduced, so, heating temperature should be considered synthetically to save energy; ultrasonic vibrating process hardly had influences on the properties of eutectic mixtures, and can be canceled ; the preparation of fatty acids eutectic mixture did not have any damages to the chemical structures of fatty acids.
DOI:10.1016/j.enconman.2013.01.026      URL     [本文引用:1]
5 Wang Lijiu, Meng Duo, Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage, Appl. Energy, 87(8), 2662(2010)
This work is focused on the preparation and characterization of fatty acid eutectic/polymethyl methacrylate (PMMA) form-stable phase change material (PCM). Capric acid (CA), lauric acid (LA), myristic acid (MA) and stearic acid (SA) were selected to prepare binary fatty acid eutectic for the sake of decreasing the phase change temperature. Using the method of self-polymerization, CA-LA, CA-MA, CA-SA and LA-MA eutectics acting as the heat-absorbing materials and PMMA serving as the supporting material were compounded in the ratio of 50/5000 wt.%. The relations between mass fraction of LA-MA eutectic and latent heat and compressive strength of LA-MA/PMMA composite were discussed, and the feasible maximum mass fraction of LA-MA eutectic was determined to be 70%. CA-LA/PMMA, CA-MA/PMMA, CA-SA/PMMA and LA-MA/PMMA composites were examined to investigate their potential application in building energy conservation. Scanning electron microscope and polarizing optical microscope observations showed that fatty acid eutectic was coated by PMMA thus the composite remained solid when the sample was heated above the melted point of the fatty acid. Fourier-transform infrared results indicated that fatty acid and PMMA had no chemical reaction and exhibited good compatibility with each other. According to the differential scanning calorimetry results, phase change temperatures of CA-LA/PMMA, CA-MA/PMMA, CA-SA/PMMA and LA-MA/PMMA composites were 21.1100 00°C, 25.1600 00°C, 26.3800 00°C and 34.8100 00°C and their latent heat values were determined to be 76.300 kJ/kg, 69.3200 kJ/kg, 59.2900 kJ/kg and 80.7500 kJ/kg, respectively. Moreover, thermal stability and expansibility of the form-stable PCMs were characterized by thermogravimetric analysis and volume expansion coefficient respectively, and the results indicated that the composites were available for building energy conservation.
DOI:10.1016/j.apenergy.2010.01.010      URL     [本文引用:1]
6 TIAN Yunfeng, LI Zhen, WANG Yang, ZENG Ping, JIANG Lingyi, Preparation and performance of a phase change heat storage composite of paraffin/different particle sized expanded graphite, Chinese Journal of Materials Research, 29(4), 265(2015)
[本文引用:1]
(田云峰, 李珍, 王洋, 曾萍, 姜凌艺, 石墨/不同粒径膨胀石墨复合相变蓄热材料的制备和性能, 材料研究学报, 29(4), 265(2015))
?用熔融共混法制备石蜡/不同粒径膨胀石墨复合相变储热材料,对样品进行xrd、ft-ir、sem、dsc和lfa表征分析,研究了不同粒径膨胀石墨的质量比例对复合相变储热材料性能的影响。结果表明:随着小粒径膨胀石墨含量的增加,复合相变储热材料的热扩散系数先增大后减小。在大小粒径膨胀石墨质量比例为9∶1时,石蜡充分利用了大小粒径膨胀石墨的镶嵌式空间结构,复合相变材料的热扩散系数为1.964×10-6m2/s,比纯石蜡提高了22倍,相变潜热为144.2j/g。
URL    
7 XIAO Xin, ZHANG Peng, Thermal characterization of graphite foam/paraffin composite phase change material, Journal of Engineering Thermophysics, 34(3), 532(2013)
[本文引用:1]
(肖鑫, 张鹏, 泡沫石墨/石蜡复合相变材料热物性研究, 工程热物理学报, 34(3), 532(2013))
本文采用真空注入法制备了泡沫石墨/石蜡复合相变材料,并比较了其和非真空法制备材料的注入比差异。对制成的复合相变材料进行了结构和热物性的表征及测试。采用激光热导热仪测量了有效热导率,并通过理论模型进行验证。由差示扫描量热仪(DSC)得到了复合相变材料的相变特性。结果表明,真空注入法是制备多孔基材复合相变材料的有效方法,真空法得到的复合相变材料的有效热导率较纯石蜡提高了近311倍。复合相变材料的固--液相变点较纯石蜡无显著变化,受泡沫石墨中石墨骨架高热导率和多孔介质内部热非平衡的影响,复合相变材料的固--固相变点变得不明显。复合相变材料的吸热系数较纯石蜡有很大的提高。
URL    
8 WANG Fang, ZHANG Gongzheng, Nonisothermal kinetics of solid-solid phase transitions in polyethylene glycol/polyacrylamide phase change materials, Polymer Materials Science and Engineering, 23(6), 118(2007)
[本文引用:1]
(王芳, 张公正, 聚乙二醇/聚丙烯酰胺相变材料非等温固-固相变动力学, 高分子材料科学与工程, 23(6), 118(2007))
通过在丙烯酰胺聚合反应中加入聚乙二醇的方法制得的聚乙二醇(PEG)/聚丙烯酰胺(PAAm)相变材料具有固-固相转变的性质。对聚乙二醇及五种相变材料分别进行不同速率的非等温DSC测试,采用Kissinger和Ozawa两种动力学模型研究了非等温固-固相变动力学,计算了固-固相变过程的活化能和反应级数,两种方法求得的表观活化能Ea值相一致。
9 ZHANG Lei, Study on preparation, properties and phase change heat transfer process of polyethylene glycol-based composite thermal energy storage materials, PhD disseration (Wuhan, Wuhan University of Technology, 2012)
[本文引用:1]
(张磊, 聚乙二醇基复合储热材料的制备、性能及其相变传热过程研究, 博士学位论文(武汉, 武汉理工大学, 2012))
相变储热技术具有储热密度大和储热过程近似恒温的优点,在太阳能 热利用、电子器件热保护以及建筑节能等方面具有广阔的应用前景。聚乙二醇(PEG)是目前最受关注的相变材料之一,具有相变潜热大、相变温度范围广、物化 性能稳定和安全环保等优点,但其在实际应用中仍存在导热性能差和液相泄漏问题。本文提出采用材料复合技术对其进行改性,筛选两类不同结构特征的石墨材料为 导热强化相,分别制备了PEG/膨胀石墨(EG)和PEG/纳米石墨片(GnPs)复合相变材料;研究了复合材料组成、结构与热物性能之间的关系及其动力 学机理;在此基础上设计并制备了新型复合定形相变...
DOI:10.7666/d.y2098700      URL    
10 ZHANG Ni, The preparation and dynamics research of composite phase change thermal storage materials and its application in building materials, Master thesis (Guangzhou, South China University of Technology, 2012)
[本文引用:1]
(张妮, 复合相变蓄热材料的制备、相变动力学研究及在建筑材料中的应用, 硕士学位论文(广州, 华南理工大学, 2012))
目前,储热技术的出现,正逐渐改善全球能源利用的现状,尤其在建筑节能方面的应用引起了全世界各界的广泛关注。对于如何制备出新型相变储热材料,如何了解其相变动力学特征,如何提高相变材料与建筑材料之间的相容性和稳定性等问题的深入研究,将对储热技术的发展及其应用于建筑节能具有很大的实际意义。 本文选取了相变石蜡(RT28)、十八烷(OC)和正十二醇(AL)为相变材料,膨胀珍珠岩为载体,以毛细吸附法制备三种膨胀珍珠岩基复合相变储热材料。采用吸附饱和度分析、扫描电镜(SEM)分析、X射线衍射(XRD)分析、差示扫描量热分析(DSC)等表征了复合相变储热材料的结构和热性能。膨胀珍珠岩对三种有机相变材料的最大吸附饱和度均为40wt%,且均具有较好的封装效果,复合相变储热材料的相变温度与纯相变材料相差不大,其相变潜热值与基于相变材料质量百分含量的计算值相当。 在相变动力学研究中,以40wt%RT28/EG-PCM、40wt%OC/EP-PCM及40wt%LA/EP-PCM为研究对象,通过Kissinger方程和Ozawa方程估算活化能E和指前因子A,通过Coats-Redfern积分方程和Ozawa方程外推处理后,得出结论:三种材料的机理函数分别符合Mampel Power法则(幂函数法则)、Mample单行法则(一级)和Avrami-Erofeev方程,其机理函数的积分方程分别为G(α)=α3/2、G (α)=-ln(1-α)和G(α)=[-ln(1-α)]2/3。 在复合相变储热材料在建筑材料的应用研究中,将已制备好的RT28/EP-PCMs与水泥和水按一定体积比掺混制备复合相变储热砂浆,再通过标准试模(70.7×70.7×70.7mm~3)和自制试模(10×100×100mm~3)制备出复合相变储热水泥块和水泥板。当RT28含量达到40wt%时,制得的复合水泥板的表观密度、7天抗压强度及导热系数与普通膨胀珍珠岩水泥板相比约分别升高37.2%、40%和35.2%,均可达到建筑应用的标准。 将制备好的复合相变储热水泥板组合成封闭立方体空间,尺寸为100×100×100mm~3,壁厚10mm,在氙灯模拟太阳光辐射的实验条件下,测试立方体各测试点温度的变化情况,来研究复合水泥板的节能效果,分别进行了A组和B组测试。在相同的外界辐射条件下,随着RT28含量的增加,立方体上板外壁与立方体内部的最大温差逐渐增大,当RT28含量为40wt%,A组和B组对应的最大温差分别为25.231℃和18.717℃。因此,在普通建筑材料中加入一定量的相变材料可对室温发挥一定的调节作用,减小室内温度的波动,并且相变材料的含量越高,温度调节的效果越明显,节能效果越好。
URL    
11 HUANG Xue, CUI Yingde, YIN Guoqiang, ZHANG Buning, Preparation and phase transformation kinetic of organic modified montmorillonite based composite phase change material, Materials Review, 29(8), 64(2015)
[本文引用:2]
(黄雪, 崔英德, 尹国强, 张步宁, 有机改性蒙脱土基复合相变材料的制备及相变动力学分析, 材料导报, 29(8), 64(2015))
以癸酸(CA)、肉豆蔻酸(MA)、硬脂酸(SA)三元低共熔物为相变材料,有机改性蒙脱土(OMMT)为层状封装材料,采用熔融浸渗法制备CA-MA-SA/OMMT复合相变材料,相变材料和层状材料的最佳质量比m(CAMA-SA)∶m(OMMT)=7∶3。采用X射线衍射(XRD)、红外光谱(FT-IR)和差示扫描量热分析(DSC)对复合相变材料的结构、性能进行表征。结果表明:三元脂肪酸低共熔物被有效封装在改性后的蒙脱土层间,复合相变材料的相变温度为20.14℃,相变潜热为89.14J·g-1。相变动力学分析结果,复合相变材料的相变反应级数为1.18,活化能为14.22kJ·mol-1。活化能说明低共熔物与蒙脱土之间是嵌合关系,不是化学吸附。
12 Kissinger H E, Reaction kinetics in differential thermal analysis, Analytical Chemistry, 29(11), 1704(1957)
García-Pérez and Alcalá-Quintana (2010) dispute the conclusion of Lapid, Ulrich, and Rammsayer (2008) that the two-alternative forced choice (2AFC) task yields meaningfully larger estimates of the difference limen (DL) than does the reminder task. García-Pérez and Alcalá-Quintana overlook, however, fundamental properties of 2AFC psychometric functions and Type B order errors in their reanalysis. In addition, their favored theory (i.e., the difference model with guessing) does not provide a plausible account for why the 2AFC task tends to yield larger DLs (by about 50%) than does the reminder task. In trying to clarify these issues, I hope to advance the proper assessment of discrimination performance in 2AFC tasks.
DOI:10.1021/ja01558a009      URL     [本文引用:1]
13 ZHANG Zhengguo, LONG Na, FANG Xiaoming, Study on performance of paraffin/expanded graphite composite phase-change material, Journal of Function Materials, 8(40), 1314(2009)
[本文引用:1]
(张正国, 龙娜, 方晓明, 石蜡/膨胀石墨复合相变储热材料的性能研究, 功能材料, 8(40), 1314(2009))
以石蜡为相变材料、膨胀石墨为支撑结构,利用膨胀石墨的多孔吸附 特性,制备出了石蜡含量90%(质量分数)的石蜡/膨胀石墨复合相变储热材料.采用扫描电镜(SEM)、偏光显微镜(PM)、X射线衍射(XRD)及差示 扫描量热分析(DSC)对复合相变储热材料的结构和性能进行了表征.结果表明,膨胀石墨吸附石蜡后仍然保持了原来疏松多孔的蠕虫状形态,石蜡被膨胀石墨微 孔所吸附,在石蜡质量含量为90%时仍保持定型特性;复合相变储热材料没有形成新物质,其相变温度与石蜡相似,相变焓与基于复合材料中石蜡含量的相变焓计 算值相当.
14 YANG Hua, MAO Jian, FENG Jie, Investigation on preparation and performance of paraffin/silicon dioxide composite phase change materials, Materials Review, 24(15), 279(2010)
[本文引用:1]
(杨化, 毛健, 冯杰, 石蜡/SiO2复合相变材料的制备及性能测试, 材料导报, 24(15), 279(2010))
采用一种简便的方法制备了以SiO_2作为载体的石蜡复合相变材料。采用差示扫描量热仪(DSC)测得其相变潜热为90.36J/g。红外光谱仪(IR)测试分析表明石蜡与SiO_2是简单的嵌合关系,未生成其它物质。扫描电镜(SEM)观察显示复合相变材料具有多孔结构,石蜡被束缚在孔洞中。制作了复合相变材料试板并将其与用碳酸钙所制作的试板进行升降温对比实验,结果显示前者的升降温速率均低于后者。
URL    
15 A. Sari, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material, Appl. Therm. Eng., 27(8), 1274(2007)
This study aimed determination of proper amount of paraffin (n-docosane) absorbed into expanded graphite (EG) to obtain form-stable composite as phase change material (PCM), examination of the influence of EG addition on the thermal conductivity using transient hot-wire method and investigation of latent heat thermal energy storage (LHTES) characteristics of paraffin such as melting time, melting temperature and latent heat capacity using differential scanning calorimetry (DSC) technique. The paraffin/EG composites with the mass fraction of 2%, 4%, 7%, and 10% EG were prepared by absorbing liquid paraffin into the EG. The composite PCM with mass fraction of 10% EG was considered as form-stable allowing no leakage of melted paraffin during the solid-liquid phase change due to capillary and surface tension forces of EG. Thermal conductivity of the pure paraffin and the composite PCMs including 2, 4, 7 and 10 wt% EG were measured as 0.22, 0.40, 0.52, 0.68 and 0.82 W/m K, respectively. Melting time test showed that the increasing thermal conductivity of paraffin noticeably decreased its melting time. Furthermore, DSC analysis indicated that changes in the melting temperatures of the composite PCMs were not considerable, and their latent heat capacities were approximately equivalent to the values calculated based on the mass ratios of the paraffin in the composites. It was concluded that the composite PCM with the mass fraction of 10% EG was the most promising one for LHTES applications due to its form-stable property, direct usability without a need of extra storage container, high thermal conductivity, good melting temperature and satisfying latent heat storage capacity.
DOI:10.1016/j.applthermaleng.2006.11.004      URL     [本文引用:1]
16 Feng L L, Zheng J, Yang H Z, Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials, Solar Energy Materials and Solar Cells, 95, 646(2011)
Shape-stabilized phase change materials (PCMs) composed of polyethylene glycol (PEG) and mesoporous active carbon (AC) were prepared by a blending and impregnating method. Various techniques were carried out to characterize the structural and thermal properties of the composites. Lower phase change temperatures and enthalpies were observed as the weight percentage and molecular weight of PEG was decreased. The crystallinity of PEG in the PCMs decreased with the increase in the AC content. The activation energy of the PEG phase change decreased with higher PEG weight percentages. We conclude that the phase change properties of the PEG/AC PCMs are influenced by the adsorption confinement of the PEG segments from the porous structure of AC and also the interference of AC by acting as an impurity with perfect PEG crystallization.
DOI:10.1016/j.solmat.2010.09.033      URL     [本文引用:1]
17 ZHANG Qing, WANG Hongli, MI Xin, Preparation and characterization of lauric-myristic-capric acid/expanded graphite form-shaped composite phase change material, New Chemical Materials, 43(4), 47(2015)
[本文引用:1]
(张庆, 王宏丽, 米欣, 月桂酸-肉豆蔻酸-癸酸/膨胀石墨定形相变材料的制备与性能研究, 化工新型材料, 43(4), 47(2015))
采用超声波震荡法制备了月桂酸-肉豆蔻酸-癸酸三元脂肪酸共晶物,以膨胀石墨为基体,真空吸附法制备出月桂酸-肉豆蔻酸-癸酸/膨胀石墨新型复合相变材料。FT-IR、SEM和DSC的测试结果表明:脂肪酸与膨胀石墨间属于物理结合,具有良好的化学稳定性;复合材料的熔点为21.82℃,潜热值为121.5J/g,适用于建筑储能领域;1000次加速冷热循环后其熔点和潜热变化极小,显示了良好的热稳定性。由于膨胀石墨的加入,复合相变材料的导热能力显著提高,更利于相变材料的实际应用。
URL    
资源
PDF下载数    
RichHTML 浏览数    
摘要点击数    

分享
导出

相关文章:
关键词(key words)
复合材料
复合相变材料
膨胀石墨
硬脂酸
相变动力学

composite
composite phase change ma...
expanded graphite
stearic acid
phase transformation
kinetics

作者
李云涛
晏华
汪宏涛
王群

LI Yuntao
YAN Hua
WANG Hongtao
WANG Qun