Chinese Journal of Material Research  2016 , 30 (7): 496-502 https://doi.org/10.11901/1005.3093.2015.196

Orginal Article

316L不锈钢单轴疲劳动态应变的时效分析*

金丹, 李江华, 田大将

沈阳化工大学能源与动力工程学院 沈阳 110142

Dynamic Strain Aging of 316L Stainless Steel During Uniaxial Fatigue Process at 600℃

JIN Dan**, LI Jianghua, TIAN Dajiang

School of Energy and Power Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China

文献标识码:  分类号 TG142.71 文章编号 1005-3093(2016)07-0496-07

通讯作者:  To whom correspondence should be addressed, Tel: (024)89381016, E-mail: jindan76@163.com

收稿日期: 2015-07-31

网络出版日期:  2016-07-25

版权声明:  2016 《材料研究学报》编辑部 《材料研究学报》编辑部

基金资助:  * 国家自然科学基金11102119和国家重点基础研究发展计划2011CB706504资助项目

作者简介:

本文联系人: 金 丹, 教授

展开

摘要

进行了316L不锈钢在600℃不同应变条件下的单轴低周疲劳实验。结果表明, 材料在三个应变范围下均表现出了动态应变时效(DSA)现象, 采用“应力跌幅”的概念比较了不同应变范围的锯齿屈服程度, 通过可动位错与扩散的溶质原子间不同形式的交互作用分析了此现象, 讨论了最大应力跌幅的循环硬化及循环软化的相关性。DSA现象有明显的循环周次相关性, 循环初期DSA现象明显, 随后逐渐减弱甚至消失, 但是在失效前DSA现象再次出现, 气团形式的不同造成了不同循环周次下DSA现象的差异。在低应变范围DSA现象仅表现出了A型锯齿波, 在高应变范围不同周次及同一周次的不同阶段波型表现为A、B、A+B、C及B+C型。最后, 采用SEM分析了疲劳断口的裂纹源区和扩展区。

关键词: 金属材料 ; 316L不锈钢 ; 动态应变时效(DSA) ; 应力跌幅 ; 锯齿波 ; 原子气团

Abstract

Low cycle fatigue tests for different strain ranges were conducted for 316L stainless steel at 600℃ under uniaxial loading. The results show that the dynamic strain aging (DSA) can be observed for three strain ranges. The concept of stress drop has been introduced to characterize the degree of serrated yielding for different strain ranges. The difference in the serrated yielding amount for different strain ranges can be attributed to the different interactions between solute atoms and dislocations. The maximum stress drop is related to the cyclic hardening or cyclic softening. DSA is related to the number of cycles. The material presents the obvious DSA for a few cycles and then followed by weak serrated yielding, even disappearing. However, the serrated yielding can be observed again before fatigue failure. The difference of serrated yielding can be attributed to the types of atom atmospheres at different cycles. A-type serrated wave was observed for smaller strain range, however, types of A, B, A+B, C, and B+C serrated wave can be found for different cycles and different phases in one cycle for larger strain range. Finally, the crack source region and crack propagation region of the fatigue fracture were observed by SEM.

Keywords: metallic materials ; 316L stainless steel ; dynamic strain aging(DSA) ; stress drop ; serrated wave ; atom atmospheres

0

PDF (3991KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

金丹, 李江华, 田大将. 316L不锈钢单轴疲劳动态应变的时效分析*[J]. , 2016, 30(7): 496-502 https://doi.org/10.11901/1005.3093.2015.196

JIN Dan, LI Jianghua, TIAN Dajiang. Dynamic Strain Aging of 316L Stainless Steel During Uniaxial Fatigue Process at 600℃[J]. Chinese Journal of Material Research, 2016, 30(7): 496-502 https://doi.org/10.11901/1005.3093.2015.196

316L奥氏体不锈钢具有优良的高温蠕变特性、良好的抗腐蚀性能及抗敏化性能, 广泛应用于核反应堆容器和管道系统[1]。但是, 作为第四代反应堆包壳材料, 其服役温度为450-600℃, 恰好位于316L不锈钢的动态应变时效(Dynamic Strain Aging, 简写DSA)敏感温区(300-600℃)范围内。所谓动态应变时效(DSA), 是指在一定的温度和应变速率范围内在金属或合金材料中出现的应变与时效同时进行的一种反常塑性失稳现象, 宏观表现为应力-应变曲线上出现锯齿状波形, 因此又称为锯齿屈服(PLC效应)。针对动态应变时效的本质及其产生条件, 国内外学者提出了不同的物理模型和理论, 主要有考虑溶质原子和位错相互作用的Cottrell[2]模型, McComick[3]和Van den Beukel[4]模型。Schoeck[5]的研究表明, 位错的集体行为和溶质原子的时效作用使有效应力增加, 产生塑性不稳定, 因此考虑上述两因素提出了新的模型。Xiao考虑动态应变时效对流变应力的影响, 建立了一种置换式面心立方合金总流变应力的表象模型[6, 7]

近年来国内外学者研究了316L不锈钢的动态应变时效现象。Kanazawa等[8-10] 对比分析了DSA现象对微观结构形式的影响。结果表明, 当温度低于200℃时316L(N)不锈钢的微观结构为胞状结构; 温度为200-550℃时为平面结构, 温度高于550℃时微观结构又恢复为胞状结构或亚晶粒结构。Hong等[11]探讨了DSA对316L不锈钢疲劳寿命的影响, 发现DSA现象导致疲劳寿命降低。Jiang等[12]探讨了DSA预处理对316L疲劳蠕变性能的影响, 动态应变时效预变形处理能有效减小材料的循环应变幅值, 提高材料的强度, 延长材料的疲劳蠕变寿命。韩鹏程等[13]着重研究了316L不锈钢在高温拉伸过程中DSA现象对力学性能的影响及锯齿流变行为, 并计算出锯齿形成的有效激活能, 确定了参与DSA效应的溶质原子类型。申文竹等[14]讨论了316L不锈钢25-350℃范围内的拉伸变形行为, 建立了316L不锈钢的流变应力计算模型。

目前国内外针对316L不锈钢DSA效应的研究多集中在拉伸过程, 而较少研究疲劳过程中的DSA现象。本文对316L不锈钢进行600℃不同应变范围下的单轴低周疲劳实验, 比较不同应变范围下滞回线特性, 并分析不同循环周次下的动态应变时效特点, 采用SEM分析疲劳断口。

1 实验方法

实验用材料为316L奥氏体不锈钢, 其化学成分列于表1。该材料的室温屈服强度 σy=247MPa, 拉伸强度 σb=564MPa, 杨氏模量 E=200GPa, 泊松比 μ=0.3。试件取自直径30 mm的棒材, 加工为薄壁圆管试样, 内、外直径分别为9 mm和12 mm, 标距段长度为12 mm, 具体尺寸及形状见图1

图1   试件的形状及几何尺寸(mm)

Fig.1   Shape and geometry of specimen (mm)

表1   材料化学成分

Table 1   Chemical Composition of Material

CSiMnNiCrMoPS
0.0120.311.651216.872.050.0370.012

新窗口打开

实验在多轴液压疲劳实验机上进行, 温度为600℃, 采用高周波感应加热, 温度由点焊在试件过渡段的热电偶进行测量, 控制精度为±3℃。为了保持在实验过程中试件受热均匀, 升温1 h后进行实验。采用应变控制进行单轴疲劳实验, 控制应变范围为0.7%、1.0%和1.2%, 设定Mises应变速率为0.1%/s, 完全对称三角波控制, 当正应力水平下降半寿命应力的25%时即为失效。

2 实验结果及讨论

2.1 不同应变范围的滞回线特性

图2给出了在不同应变范围条件下半寿命滞回线, 在三个应变范围滞回线均表现出不同程度的锯齿波动现象, 即PLC效应[15, 16], 亦称为DSA效应。在600℃溶质原子扩散较快, 当位错运动暂时受阻于障碍物时单位时间内偏聚其周围的溶质原子数目较多, 使位错周围形成有效的溶质原子气团, 对可动位错进行钉扎, 产生额外阻力, 引起应力上升; 随后, 在外力作用下可动位错挣脱溶质原子气团, 产生脱钉, 引起应力下降。这种微观上不断反复的“钉扎”“脱钉”过程, 表现为滞回线中的锯齿波动现象, 即DSA用宏观特征参量“应力跌幅”表征不同应变范围现象。

图2   不同应变范围下半寿命滞回线

Fig.2   Hysteresis loops for different strain ranges at half-life

下DSA现象的显著程度[17], 该参数反映了溶质原子气团对可动位错的钉扎强度。以半寿命下滞回曲线为基准计算应力跌幅值。 Δε=0.7%Δε=1.0%Δε=1.2%半寿命时一个循环内最大应力跌幅分别为10.4、1.5和5.4MPa, 可以认为应变为0.7% 时DSA效应最为明显, 为1.0%时DSA效应最弱。DSA现象是扩散的溶质原子与可动位错共同作用的结果, 溶质原子的扩散速度受空位浓度的影响[3]。空位浓度为

Cv=KΔε2m(1)

式中 Δε为应变范围, K, m分别为常数。由式(1)可见, 空位浓度 CvΔε2m, 空位浓度随着应变范围的增大而增大, 使溶质原子扩散速度大幅提高。

Δε=0.7%时溶质原子扩散速度适中, 使被阻拦的可动位错周围溶质原子数目较多, 溶质原子气团与可动位错作用强烈, 因此DSA现象显著; 当 Δε=1.0%时空位浓度比 Δε=0.7%时急剧增大, 使部分溶质原子扩散速度远大于可动位错速度, 位错拖曳着溶质原子气团运动, 无法产生脱钉, 应力跌幅降低, DSA现象减弱; 当 Δε=1.2%时形成了新的微观结构, 使更多的DSA机制被激活, 位错集体效应的发生使应力跌幅增大, DSA现象明显[18]

2.2 最大应力跌幅与循环特性

图3(a)给出了不同应变范围一个循环周次内最大应力跌幅与相应循环周次的关系, Δε=1.0%时应力跌幅较小。由图可见, 在三应变范围最大应力跌幅在循环加载初期最为强烈, 随后逐渐减弱, 但是在失效前溶质原子与可动位错的钉扎作用再次加强, 最大应力跌幅再次增大。实验中峰值应力随着循环周次的变化如图3(b)所示。可以看出, 该材料在三个应变范围均表现出加载初期的循环硬化, 而后达到饱和, 最后表现为循环软化直至失效, Δε=1.2%时失效前表现出了二次硬化的特点。在加载初期, 随着循环的进行材料内位错量增加显著, 但是位错运动速率较低, 有助于溶质原子与可动位错间的钉扎。由于316L不锈钢为面心立方结构, 具有较低层错能, 位错滑移时分解为不全位错, 形成堆垛层错, 通过TEM观察到的层错区中无序分布的溶质原子即为偏聚形成Suzuki气团[19]。Suzuki溶质原子气团的形成加强了钉扎强度, 导致了加载初期锯齿屈服明显; 随着循环周次的增加材料逐渐表现为循环软化特性, 峰值应力降低, 当加载外力不足以使位错克服溶质原子的钉扎强度时已被钉扎的位错便不能发生脱钉过程, 因此表现为最大应力跌幅和锯齿长度迅速减小, 以至于在软化阶段滞回线中的锯齿波动减弱, 甚至消失; 在最后阶段, 随着循环周次的增加滑移带数量增多, 带间间距降低, 位错的有效平均自由程减小, 使得可动位错密度降低。温度是溶质原子的主要控制因素。在高温条件下溶质原子以较快速度扩散, 在位错周围呈有序分布, 可观察到短程有序的Snoke气团[19]。Snoek气团的形成增大了受阻位错周围溶质原子的浓度, 加剧了溶质原子与位错间的钉扎作用, 即DSA效应增强。同时, 灯芯绒结构的形成提高了位错受阻的几率, 使溶质原子扩散至可动位错周围并进行有效钉扎所需时间缩短, 即DSA更易发生, 表现为失效前锯齿屈服的再次出现。

图3   最大应力跌幅与循环周次关系和不同循环周次的最大应力值

Fig.3   Relationship between the maximum stress drop and cycle (a) relationship between the maximum stress and cycle (b)

2.3 动态应变时效的循环周次相关性

图4给出了 Δε=0.7%时不同循环周次下的应力-应变滞回线。在加载初期, 在每一循环中加载阶段((1)、(3))比卸载阶段((2)、(4))锯齿屈服明显, 锯齿跌幅((5))大, 即加载阶段的DSA现象较卸载阶段更为显著, 第5循环周次的加载阶段最大锯齿跌幅约为卸载阶段最大锯齿跌幅的4倍。同在加载阶段, 压缩部分比拉伸部分最大应力跌幅大, 即压缩阶段DSA作用比拉伸阶段强烈, 且压缩阶段的单个锯齿长度((6))较长。但是不同循环周次其锯齿屈服程度并不相同。相对于其他周次, 4-13周次的锯齿跌幅最为显著, 其锯齿数量多, 锯齿长度长, 且在整个循环过程中都发生DSA效应; 而在14-73周次内在 ε=0.35%卸载至 ε=0.10%左右过程中, 锯齿屈服现象部分消失; 在74-902循环周次只在压缩阶段存在锯齿波动, 在903-2280周次内滞回线光滑, 之后锯齿屈服现象再次出现直至失效。

图4   不同周次下Δε=0.7%的滞回线

Fig.4   Hysteresis loops of different cycles forΔε=0.7% (Note: (1)—Tensile stage, (2)、(4)—Unloading stage, (3)—Compressive stage, (5)—Stress drop, (6)—Single serration length (N, cycle number)

图5给出了 Δε=1.0%时的应力-应变曲线, 整个疲劳过程中锯齿跌幅较小, 其特点仍为前4周锯齿屈服现象明显, 随后逐渐减弱至550周次时消失, 在最后裂纹扩展阶段再次出现锯齿屈服。

图5   不同周次下Δε=1.0%的滞回线

Fig.5   Hysteresis loops of different cycles forΔε=1.0%

Δε=1.2%时滞回曲线前5周呈现出较明显的锯齿屈服, 但 发生在滞回曲线的拉伸和压缩阶段, 且锯齿长度和应力跌幅均比 Δε=0.7%有所降低。随着循环周次增加锯齿屈服现象逐渐变弱, 在第130周次达到稳定状态。但循环至600周次时再次出现较显著的锯齿波动, 且锯齿跌幅逐渐增大至稳定, 如图6所示。

依据宏观应力-应变曲线中锯齿形态的差异, Rodriguez[20]将PLC效应中的波型分为A, B和C三种。在 Δε=0.7%1.0%应变范围, 在整个疲劳过程中锯齿状曲线表现为应力突然上升, 然后快速降低到平均应力水平(图4、5), 为典型的A型波特征。随着应变范围的增大应力跌幅减小, 锯齿分布稀疏。与 Δε=0.7%1.0%时的锯齿波型相比, Δε=1.2%不同周次的锯齿波型不同(图6)。在循环的前3周, 拉伸阶段除表现为A型波外, 锯齿在平均应力附近震荡而且快速连续, 因此同时具有B型波特征, 即波型为A+B型; 而在压缩阶段, 其应力跌落基本处于光滑滞回线的上部, 为典型的C型波特征。随着循环的进行, 在100-300周次拉伸阶段表现为B型特征, 而在压缩阶段呈现出B+C型特征。

图6   不同周次下Δε=1.2%的滞回线

Fig.6   Hysteresis loops of different cycles forΔε=1.2%

失效前, 锯齿波型表现为A型和C型。在总体上, Δε=1.2%时滞回线锯齿波型较复杂, 与文献[21]的结果相一致。

3 316L不锈钢的疲劳断口形貌观察与分析

图7给出了不同应变范围下的疲劳断口裂纹源区的SEM结果。从图7可以看出, 所有试样均为多源起裂, 这是低周疲劳的显著特征。当 Δε=0.7%时裂纹从内壁起裂(图7a), 向外扩展(图7d), 呈现为氧化及台阶特征, 说明裂纹萌生是温度及应力共同作用的结果; 当 Δε=1.0%(图7b)时内壁疲劳区比外壁疲劳区长, 裂纹由内壁先起裂, 局部放大后(图7(e))可观察到氧化特征; 当 Δε=1.2%(图7c)时裂纹主要起裂于内壁, 局部放大后(图7f)可见起裂位置氧化严重且疲劳条带间距宽, 表明该应变范围下裂纹扩展速度很快。

图7   不同应变范围下裂纹源区SEM结果

Fig.7   SEM results of crack source region for different strain ranges (a) (d) Δε=0.7% (b) (e)Δε=1.0%(c) (f) Δε=1.2%

根据动态应变时效机理, DSA效应的钉扎作用会引起应力集中, 使材料呈现独特的断裂特性。图8给出了不同应变范围下裂纹扩展区的特征, 三应变范围的疲劳扩展区均观察到了沿晶特征。当可动位错运动至晶界处时晶界对位错的阻碍作用促使溶质原子钉扎气团在晶界处形成, 引起晶界处应力集中及其不均匀变形, 因此在高温下疲劳断口沿晶断裂特征更为显著。同时, 三个应变范围的扩展区都有不同程度的氧化特征。根据上述断口扩展区分析, 显著的沿晶断裂特征是高温条件下材料疲劳断口扩展区的主要特征。而在本文的研究中, 由于疲劳试验的加载速率较高, 在试验中未观察到与蠕变相关的现象。在高温动态应变时效作用下, 为了克服气团钉扎作用增大外加应力, 可能导致裂纹尖端的应力集中更为严重, 从而加快裂纹扩展, 降低了疲劳失效的过程。因此, 316L不锈钢在600℃的疲劳失效是疲劳、动态应变时效和氧化的相互作用引起的。

图8   不同应变范围裂纹扩展区SEM结果

Fig.8   SEM results of crack propagation region for different strain ranges (a) Δε=0.7%, (b) Δε=1.0%, (c) Δε=1.2%

4 结论

1. 316L不锈钢在600℃进行的0.7%、1.0%及1.2%应变范围的单轴低周疲劳实验, 在三应变范围均表现出了锯齿屈服现象, 半寿命时最大应力跌幅分别为10.4、1.5和5.4 MPa。当 Δε=0.7%时, 溶质原子扩散速度适中, 溶质原子气团与可动位错作用强烈, 因此DSA现象更为显著; Δε=1.0%时空位浓度增大, 不能脱钉, 表现为DSA现象减弱; 当应变范围增至1.2%时形成了新的微观结构, 位错集体效应的发生使DSA作用增强, 锯齿应力跌幅增大。最大应力跌幅与循环硬化和软化特性相关。

2. 在不同应变范围DSA现象均与循环周次密切相关。在循环初期DSA现象明显, 随后逐渐减弱甚至消失, 但是在失效前DSA现象再次出现。在循环初期和失效前气团形式的不同造成了不同周次下DSA现象的差异。 Δε=0.7%时DSA现象仅仅表现出了A型锯齿波, 当应变范围增至1.2%时不同循环周次和同一周次的不同阶段锯齿波型表现为A、B、A+B、C及B+C型。

3. 在三个应变范围均为多源起裂, 裂纹源区存在着氧化及台阶特征。晶界处动态应变时效引起的不均匀变形使得裂纹扩展区中的沿晶特征更为显著。

The authors have declared that no competing interests exist.


参考文献

[1] S. G. Hong, S. B. Lee, T. S. Byun,

Temperature effect on the low-cycle fatigue behavior of type 316L stainless steel: Cyclic non-stabilization and an invariable fatigue parameter,

Materials science and engineering A, 457(1-2), 139(2007)

DOI      URL      [本文引用: 1]      摘要

The temperature effect on the cyclic non-stabilization of cold-worked 316L stainless steel during low-cycle fatigue deformation was investigated. The material underwent additional cyclic hardening at room temperature and in the temperature range of 250–60002°C; the hardening at room temperature came from plasticity-induced martensite transformation and the hardening in the temperature range of 250–60002°C was attributed to dynamic strain aging. These hardening mechanisms competed with the cyclic softening induced by dynamic recovery, which is generally predominant in cold-worked materials, and this led to the cyclic non-stabilization of the material. Three fatigue parameters: the stress amplitude, plastic strain amplitude and plastic strain energy density, were evaluated to find an invariable fatigue parameter. The results revealed that the plastic strain energy density was stabilized at the early stage of fatigue life and nearly invariant through the entire life.
[2] A. H. Cottrell,

A note on the Portevin-leChatelier effect,

Philosophical Magazine, 44(355), 829(1953)

DOI      URL      [本文引用: 1]      摘要

Summary Substitutional solute atoms in aluminium usually diffuse too slowly to cause appreciable strain ageing at room temperature. However, if the concentration of vacancies is increased by plastic deformation or by quenching, the rate of diffusion may increase sufficiently to cause strain ageing during plastic deformation. A serrated stress-strain curve should then result. These ideas are used to explain the Portevin-Le Chatelier effect.
[3] P. G.

McCormick, A model for the Portevin-Le Chatelier effect in substitutional alloys,

Acta Metallurgica, 20, 351(1972)

DOI      URL      [本文引用: 2]      摘要

Es wird ein Modell für das Einsetzen des Portevin-Le Chatelier-Effektes in Substitutionellen Legierungen entwickelt; das Modell beruht auf der Fremdstoff-Verankerung von Versetzungen, die vorübergehend an Hindernissen in ihrer Gleitebene festgehalten werden. Wenn die mittlere Verweilzeit der Versetzungen an Hindernissen gleich der zum Verankern der Versetzungen erforderlichen Zeit ist, tritt diskontinuierliches Flieβen auf. Es zeigt sich, daβ das Modell in guter 05bereinstimmung mit den experimentellen Bedingungen für diskontinuierliches Flieβen ist.
[4] Van den Beukel A, Theory of the effect of dynamic strain aging on mechanical properties, physica status solidi, A30, 197(1975)

URL      [本文引用: 1]     

[5] G. Schoeck,

The Portevin-Le Chatelier-a kinetic theory,

Acta Metallurgica, 32, 1229(1984)

DOI      URL      [本文引用: 1]      摘要

Der PLC Effekt wird durch das kooperative Verhalten von vielen Versetzungen verursacht. Wie HVTEM Beobachtungen zeigen, scheint der geschwindigkeitsbestimmende Prozess das Durchschneiden von lokalen Hindernissen durch Versetzungen zu sein, wenn w01hrend den Wartezeiten Reckalterung stattfindet. Falls die Dehnungsgeschwindigkteit 03, konstant gehalten wird besteht infolge der kinetischen Beziehung ja:math , eine Korrelation zwischen der bewegten Versetzungsdicht mittleren Wartezeit ja:math , In einem Ensemble bewegter Versetzungen k02nnen deshalb Instabilit01ten entstehen, die zu negativer Geschwindigkeitsabh01ngjkeit der Spannung führen. Zwei Mechanismen k02nnen verantwortlich sein: Alterung kann entweder die St01rke des Hindernisses erh02hen oder sie kann die Zahl der bewegten Versetzungen erniedrigen. Beide Prozesse k02nnen zu Ozillationen in der Spannung führen.
[6] XIAO Lingang, LI Xiaoqi, QIAN Kuangwu,

The critical condition model of serrated yielding for bstitutional alloys,

Science China, 4A, 423(1990)

[本文引用: 1]     

(肖林钢, 李效琦, 钱匡武,

置换合金中出现锯齿屈服现象的临界条件模型,

中国科学, 4A, 423(1990)

URL      [本文引用: 1]     

[7] L. G. Xiao, X. Q. Li, K. W. Qian,

A Model of the occurrence of serrated yielding in substitutional alloys,

Science in China, 33A, 1386(1990)

DOI      URL      [本文引用: 1]      摘要

正 On account of the integral behavior of dislocations and the interaction between solute atoms and dislocations, a model describing the serrated yielding (i.e. the PL effect) in substitutional alloys is proposed. According to this model, the serrated yielding occurring in a certain strain rate-tempe
[8] K. Kanazawa, K. Yamaguchi, S. Nishijima,

Low Cycle Fatigue

, ASTM-STP 942, 519(1998)

[本文引用: 1]     

[9] V. S. Srinivasan, R. Sandhya,

K. Bhanu Sankara Rao, S. L. Mannan, K. S. Raghavan, Effects of temperature on the low cycle fatigue behaviour of nitrogen alloyed type 316L stainless steel,

International Journal of Fatigue, 13(6), 471(1991)

URL     

[10] V. S. Srinivasan, M. Valsan, R. Sandhya,

K. Bhanu Sankara Rao, S. L. Mannan, D. H. Sastry, High temperature time-dependent low cycle fatigue behaviour of a type 316L(N) stainless steel,

International Journal of Fatigue, 21(1), 11(1999)

URL      [本文引用: 1]     

[11] S. G. Hong, K. O. Lee, S. B. Lee,

Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel,

International Journal of Fatigue, 27(10-12), 1420(2005)

DOI      URL      [本文引用: 1]      摘要

Mechanism of dynamic strain aging (DSA) and its effect on the high-temperature low-cycle fatigue resistance in type 316L stainless steel were investigated by carrying out low-cycle fatigue tests in a wide temperature range from 20 to 650°C with strain rates of 3.2×10 615 –1×10 612 /s. The regime of DSA was evaluated using the anomalous features of material behavior associated with DSA. The activation energies for each type of serration were about 0.57–0.74 times those for lattice diffusion indicating that a mechanism other than lattice diffusion is involved. It is reasonably concluded that the pipe diffusion of solute atoms along the dislocation core is responsible for DSA. Dynamic strain aging reduced the fatigue resistance by ways of multiple crack initiation, which comes from the DSA-induced inhomogeneity of deformation, and rapid crack propagation due to the DSA-induced hardening.
[12] H. F. Jiang, X. D. Chen, Z. C. Fan, J. Dong, H. Jiang, S. X. Lu,

Dynamic strain aging in stress controlled creep-fatigue tests of 316L stainless steel under different loading conditions ,

Journal of Nuclear materials, 392(3), 494(2009)

DOI      URL      [本文引用: 1]      摘要

Stress controlled fatigue–creep tests were carried out for 316L stainless steel under different loading conditions, i.e. different loading levels at the fixed temperature (loading condition 1, LC1) and different temperatures at the fixed loading level (loading condition 2, LC2). Cyclic deformation behaviors were investigated with respect to the evolutions of strain amplitude and mean strain. Abrupt mean strain jumps were found during cyclic deformation, which was in response to the dynamic strain aging effect. Moreover, as to LC1, when the minimum stress is negative at 550°C, abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While the minimum stress is positive, mean strain only jumps once at the end of deformation. Similar results were also found in LC2, when the loading level is fixed at 61100 to 385MPa, at higher temperatures (560, 575°C), abrupt mean strain jumps occur at the early stage of cyclic deformation and there are many jumps during the whole process. While at lower temperature (540°C), mean strain only jumps once at the end of deformation.
[13] HAN Pengcheng, TIAN Rong, SHEN Yanzhong, LI Zhigang,

Dynamic Strain Aging in 316L Austenitic Stainless Steel During Tensile Test at High Temperature,

Hot Working Technology, 41(16), 1(2012)

[本文引用: 1]     

(韩鹏程, 田荣, 沈寅忠, 李志刚,

316L奥氏体不锈钢高温拉伸时的动态应变时效,

热加工工艺, 41(16), 1(2012))

URL      [本文引用: 1]      摘要

在300~700℃,以应变速 率为2×10-4s-1对316L不锈钢进行拉伸试验,探索其中的动态应变时效现象及其规律。结果表明,316L奥氏体不锈钢在动态应变时效温度区间并没 有出现屈服应力平台,在450~700℃既有正常的Portevien-Le Chatelier effect(PLC)效应,也有反PLC效应;锯齿形成的有效激活能为254 kJ/mol;扩散着Cr等置换型溶质原子与运动位错之间的交互作用使材料出现动态应变时效,导致锯齿流动行为。
[14] SHEN Wenzhu, LI Chunfu, WANG Pengfei, CHEN Gongjian,

Tensile behavior and flow stress calculation of 316L stainless steel at 25~350℃,

Transactions of Materials and Heat Treatment, 33(9), 49(2012)

[本文引用: 1]     

(申文竹, 李春福, 王朋飞, 陈功剑,

316L不锈钢25~350℃中的拉伸行为及流变应力计算,

材料热处理学报, 33(9), 49(2012))

URL      [本文引用: 1]      摘要

通过高温试验装置在模拟井下工况温度25~350℃范围内进行了316L不锈钢的拉伸试验。结合拉伸试验数据、拉伸后微观结构以及断口形貌对316L不锈钢的25~350℃范围内的拉伸变形行为进行了探讨。应用温加工变形理论,建立了316L不锈钢在井下温度场环境中的形变本构方程。基于拉伸试验数据,计算了应变速率因子Z,变形激活能Q,建立了316L不锈钢温变形过程的流变应力计算模型,为完井设计中膨胀管膨胀施工提供了参考依据。
[15] QIAN Kuangwu, LI Xiaoqi, XIAO Lingang, CHEN Wenzhe, ZHANG Haoguo, PENG Kaiping,

Dynamic strain aging phenomenon in metals and alloys,

Journal of Fuzhou University, 29(6), 8(2001)

[本文引用: 1]     

(钱匡武, 李效琦, 萧林钢, 陈文哲, 张好国, 彭开萍,

金属和合金中的动态应变时效现象,

福州大学学报, 29(6), 8(2001))

DOI      URL      [本文引用: 1]      摘要

动态应变时效现象是在金属和合金中,移动着的溶质原子和运动中的位错发生交互作用时所出现的一种强化现象.这种交互作用,将产生一系列的强化效应,使金属和合金在外加载荷作用下所表现出的力学行为发生巨大的变化.所有这些效应,都将在常用的重要工业合金(如钢、铝合金、铜合金)最常使用的温度范围内出现.研究动态应变时效,不仅有助于加深对诸如金属中位错的交互作用规律、塑性和强化的微观过程与机理等的理解,而且也能帮助我们更好地控制那些常用工业合金的机械性能.本文结合多年来在这方面所做的系统研究工作,总结了动态应变时效现象的一般规律和已有的理论,并着重介绍作者参与建立的一种模型及其实验结果;还重点介绍了一些常用工业合金中动态应变时效现象的特点及其对机械性能的影响.
[16] HAN Guoming, CUI Chuanyong, GU Yuefeng, HU Zhuangqi, SUN Xiaofeng,

Investigation of Temperature Dependence of PLC Effect in A Nickel Base Superalloy,

Acta Metallurgica Sinica, 49(10), 1243(2013)

Magsci      [本文引用: 1]     

(韩国明, 崔传勇, 谷月峰, 胡壮麒, 孙晓峰,

一种镍基高温合金PLC效应的温度依赖性研究,

金属学报, 49(10), 1243(2013))

DOI      Magsci      [本文引用: 1]      摘要

<p>研究了温度对一种镍基高温合金Portevin-Le Chatelier (PLC)效应的影响<span>.在恒定的拉伸速率5</span>&times;10<sup>-4</sup> s<sup>-1</sup>下<span>, 从室温到900℃温度范围内进行拉伸实验,分析PLC效应发生的临界应变、应力跌幅、等待时间和飞行时间随温度的变化规律,揭示PLC效应的温度依赖性, 探讨不同温度范围内PLC效应产生的微观机理. 结果表明:从室温到450℃, 随着温度升高PLC效应发生的临界应变减小,应力跌幅增大, 表现为正常PLC效应, 该过程为溶质原子气团向可动位错扩散并对其形成有效钉扎控制;而从450℃到600℃, 随温度的升高临界应变增加, 表现为反常PLC效应,该过程为位错第一次摆脱溶质原子气团的钉扎而脱钉自由飞行的过程控制.当超过一定温度后, 由于不能形成有效的溶质原子气团对位错进行钉扎, 因此不会发生PLC效应.</span></p>
[17] HU Qi, ZHANG Qingchuan, FU Shihua, CAO Pengtao, GONG Ming,

Effect of precipitation on Portevin-Le Chatelier effect in Al-Mg alloys,

Acta Physica Sinica, 60(9), 514(2011)

[本文引用: 1]     

(胡琦, 张青川, 符师桦, 曹鹏涛, 龚明,

析出相在铝镁合金Portevin-Le Chatelier效应中的作用研究, 物理学报,

2011, 60(9 ), 514(2011))

DOI      URL      [本文引用: 1]      摘要

本文研究了在相同退火热处理条件下,不同析出相含量的两种铝镁合 金5456和5052在不同加载应变率下的P-LC效应.结果表明析出相对两种材料的P-LC效应有明显影响,并且析出相含量的不同所产生的影响不同.此 外,析出相含量较少的5052合金的溶质原子的扩散方式是管扩散,而析出相含量较多的5456合金不再局限于管扩散的方式,而是更为复杂.
[18] Q. Q. Fu, Y. S. Li, G. W. Liu, H. Li,

Low Cycle Fatigue Behavior of AZ91D Magnesium Alloy Containing Rare-Earth Ce Element,

Procedia Engineering, 27, 1794(2012)

DOI      URL      [本文引用: 1]      摘要

Low cycle fatigue test of AZ91D+0.3%Ce alloy was carried out in tension-compression symmetric cycle at room temperature, with triangular waveform-loading frequence in 1Hz and equivalent strain amplitude varied from 0.2% to 1.2% .The fatigue fracture morphology of the alloy was observed by SEM. The results indicate that the 蟽-蓻 hysteresis loops of AZ91D+0.3%Ce magnesium alloy exhibit some behaviors such as inflexion, asymmetry of tension and compression and serrated flow deformation at the higher total strain amplitudes; Fatigue life of AZ91D+Ce alloy is decreased with the increase of the equivalent strain amplitude, confirming to the equation of the Manson-Coffin;The behaviors of cyclic stress response and stress-strain of magnesium alloy mainly show cyclic strain hardening; Fatigue fracture of all the magnesium alloys exists several fatigue source zones, as the strain amplitude increases, the fracture surface becomes more rough and concavo-convex.
[19] M. S. Pham, S. R. Holdsworth,

Dynamic strain ageing of AISI 316L during cyclic loading at 300℃: Mechanism, evolution, and its effects,

Materials Science and Engineering: A, 556, 122(2012)

DOI      URL      [本文引用: 2]      摘要

Under the influence of dynamic strain ageing (DSA), at 300聽掳C 316L stainless steel exhibits: primary cyclic hardening due to a significant increase in dislocation density and the incidence of profuse point defects, then cyclic softening due to dislocation re-arrangement, and finally an almost stabilised response stage or secondary cyclic hardening. Flow stress serration is examined in every cycle along with a comprehensive microstructural investigation in order to study DSA and its relationship with cyclic deformation response. During primary cyclic hardening, stress serrations are initially pronounced, before gradually disappearing. There is then almost no incidence of stress serration during cyclic softening, in particular for low strain amplitude tests. However, serrated flow stress reoccurs towards the end of fatigue life. An analysis of potential dislocation locking mechanisms shows that Suzuki atmospheres of solute atoms forming in faulted areas of partial dislocations are responsible for DSA during the first two cyclic response stages. Upon further loading, Snoek atmospheres form to further strengthen the locking effect of solute atoms on dislocations, resulting in the re-occurrence of stress serration. Snoek atmospheres and the formation of a corduroy structure are responsible for secondary cyclic hardening. Finally, the influence of hydrostatic pressure on the mobility of vacancies induces a slight difference in DSA characteristics with respect to the loading direction, i.e. tensile direction or compressive direction transients.
[20] P. Rodriguez,

Serrated plastic flow,

Bulletin of Materials Science, 6(4), 653(1984)

URL      [本文引用: 1]     

[21] G. Sudhakar Rao, J. K. Chakravartty,

Saibaba Nudurupati, G. S. Mahobia, Kausik Chattopadhyay, N. C. Santhi Srinivas, Vakil Singh, Low cycle fatigue behavior of Zircaloy-2 at room temperature ,

Journal of Nuclear materials, 441(1-3), 455(2013)

URL     

/