|
|
Effect of Solubility Parameter of Alcohols Solvents on Performance of Cu2ZnSnS4 Particles |
Shixu JIANG1,Chao ZHOU2,Tiancai ZHANG2,Yanmin GAO1,* |
1. Jiangsu Key Lab of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, China 2. Shanghai Shipbuilding Technology Research Institute, Shanghai, 200032, China |
|
Cite this article:
Shixu JIANG, Chao ZHOU, Tiancai ZHANG, Yanmin GAO. Effect of Solubility Parameter of Alcohols Solvents on Performance of Cu2ZnSnS4 Particles. Chinese Journal of Materials Research, 2016, 30(11): 861-867.
|
Abstract Cu2ZnSnS4 (CZTS) particles were synthesized by a facile solvothermal method in polyvinylpyrrolidone (PVP) containing alcohols solvent, with CuCl22H2O, Zn(Ac)22H2O and SnCl45H2O as metal precursor, and thiourea as sulfur source, respectively. The effect of the variation of solubility parameter of alcohols solvents on crystal structure, composition, morphology and absorption spectra of the synthesized CZTS particles were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, transmission electron microscopy (TEM) with energy dispersive X-ray spectroscopy(EDS), UV-Vis spectroscopy and electrochemical analyzer. The results reveal that the solubility parameter of alcohols solvent has a certain influence on the crystallization, morphology, atomic ratios and photoelectric properties of the as-synthesized CZTS particles. The optimum alcohols solvent is ethylene glycol.The crystallization of CZTS particles synthesized under the above condition is pure and complete, and the CZTS particles with flaky facets are uniform and mono-dispersed. The atomic ratio of elements for CZTS particles is close to stoichiometric coefficient and the band gap of the products is about 1.47 eV, which is close to the optimum value for solar photoelectric conversion. The resistivity of CZTS is 45.86 Ωm.
|
Received: 14 March 2016
|
1 | A. G. Kannana, T. E. Manjulavallia, J.Chandrasekaranb, Influence | 2 | of solvent on the properties of CZTS nanoparticles, Procedia Engineering, 141, 15(2016) | 2 | V. A. Madiraju, K. Taneja, M. Kumar, R. Seelaboyina, CZTS synthesis in aqueous media by microwave irradiation, Journal of Materials Science, 27(4), 3152(2016) | 3 | J. Henrya, K. Mohanraja, G. Sivakumarb, Electrical and optical properties of CZTS thin films prepared by SILAR method, Journal of Asian Ceramic Societies, 4(1), 81(2016) | 4 | W. H. Zhou, Y. L. Zhou, J. Feng, J. W. Zhang, S. X. Wu, X. C. Guo, X. Cao, Solvothermal synthesis of flower-like Cu2ZnSnS4 nanostructures and their application as anode materials for lithium-ion batteries, Chemical Physics Letters, 546, 115(2012) | 5 | H. C. Jiang, P. C. Dai, Z. Y. Feng, W. L. Fan, J. H. Zhan, Phase selective synthesis of metastable orthorhombic Cu2ZnSnS4, Journal of Materials Chemistry, 22(15), 7502(2012) | 6 | S. Chet, G. P. Matthew, A. Vahid, G. Brian, K. Bonil, A. K.Brian, Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics, Journal of the American Chemical Society, 131(35), 12554(2009) | 7 | X. T. Lu, Z. B. Zhuang, Q. Peng, Y. D. Li, Wurtzite Cu2ZnSnS4 nanocrystals: a novel quaternary semiconductor, Chem. Commun., 47, 3141(2011) | 8 | M. Li, W. H. Zhou, J. Guo, Y. L. Zhou, Z. L. Hou, J. Jiao, Z. J. Zhou, Z. L. Du, S. X. Wu, Synthesis of pure metastable wurtzite CZTS nanocrystals by facile one-pot method, J. Phys. Chem. C, 116, 26507(2012) | 9 | HUANG Xianghong, The relationship between the selection of solvent recrystallization and solubility parameter, Chem. 1, 35(1999) | 9 | (黄向红, 重结晶的溶剂选择与溶解度参数之间的关系, 化学通报, 1, 35(1999)) | 10 | B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 737(1991) | 11 | C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization of nearly monodisperse CdE (E=Sulfur, Selenium, Tellurium) semiconductor nanocrystallites, Journal of the American Chemical Society, 115(19), 8706(1993) | 12 | Z. Q.Li, J. H. Shi, Q. Q. Liu, Y. W. Chen, Z. Sun, Z. Yang, S. M. Huang, Large-scale growth of Cu2ZnSnSe4 and Cu2ZnSnSe4/Cu2ZnSnS4 core/shell nanowires, Nanotechnology, 22(26), 265615(2011) | 13 | S. Ahmed, K. B. Reuter, O. Gunawan, L. Guo, L. T. Romankiw, H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solarcell, Advanced Energy Materials, 2(2), 253(2012) | 14 | P. C. Dai, X. N. Shen, Z. J. Lin, Z. Y. Feng, H. Xu, J. H. Zhan, Band-gap tunable (Cu2Sn)x/3Zn1–xS nanoparticles for solar cells, Chemical Communications, 46(31), 5749(2010) | 15 | L. Choubrac, A. Lafond, C. G. Deudon, Y. Moelo, S. Jobic, Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: from the stoichiometric to the copper-poor compounds, Inorganic Chemistry, 51(6), 3346(2012) | 16 | CAI Qian, XIANG Weidong, LIANG Xiaojuan, The research status of Cu2ZnSnS4 nanocrystal, Silicate Bulletin, 30(6), 1333(2012) | 16 | (蔡倩, 向卫东, 粱晓娟, Cu2ZnSnS4纳米晶体的研究现状, 硅酸盐通报, 30(6), 1333(2012)) |
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|