Please wait a minute...
Chinese Journal of Materials Research  2015, Vol. 29 Issue (4): 241-254    DOI: 10.11901/1005.3093.2015.111
Current Issue | Archive | Adv Search |
Development of Research on New High Temperature Superconductors
Haihu WEN
Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Cite this article: 

Haihu WEN. Development of Research on New High Temperature Superconductors. Chinese Journal of Materials Research, 2015, 29(4): 241-254.

Download:  HTML  PDF(4128KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Since discovered in 1911, the superconductors have evolved from single element, alloy to complex compounds with multiple elements.So far the proved highest superconducting transition temperature is 164 K (under pressure). In the long time of investigation on superconductivity, the understanding on the superconducting mechanism has been promoted significantly. The BCS theory which was greatly successful in describing the conventional superconductivity now is challenged by the new phenomena in some unconventional superconductors.Therefore the investigation of high temperature superconductivity mechanism is also at the dawn of major breakthrough. In this short overview, we will give a survey on the three families of high temperature superconductors, namely cuprates, iron based superconductors. Based on the experience accumulated in past decades, we propose some ideas in exploring high temperature superconductors.

Key words:  superconductivity      superconductivity mechanism      cooper paring      exploration of new superconductors     
Received:  12 August 2014     
Fund: *Supported by National Natural Science Foundation of China No. 11034011/A0402, National Basic Research Program of China Nos. 2011CBA00102 & 2012CB821403, and the Project 985.

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.111     OR     https://www.cjmr.org/EN/Y2015/V29/I4/241

Fig.1  Superconducting transition temperatures versus the time of discovery of the corresponding superconductors
Superconducting Families Typical Superconductors Highest Tc Notes
Metal and alloy superconductor Pb, Nb, Nb3Sn,Nb3Ge, V3Si, NbTi, etc. Nb3Ge (Tc=23.2 K) Varity structure Pairing by electron-phonon coupling
Inter-metallic superconductor MgB2 , Mo3S4,PbMo6S8, SmRh4B4,YNi2B2C, etc. MgB2 (Tc=40 K) Varity structure Pairing mainly by electron-phonon coupling
Heavy Fermion superconductor CeCu2Si2, UBe13, UPt3, CeNi2Ge2, CeCoIn5, Pu-based, etc. Pu-based (Tc=20 K) Vicinity of AF order, hybridization of d- and f-electrons
Cuprate superconductor La2-xSrxCuO4, YBa2Cu3O7, Bi2Sr2CaCu2O8,Bi2Sr2Ca2Cu3O12,HgBa2Ca3Cu4O12, etc. Tetragonal or orthorhombic, layered HgBa2Ca2Cu3O9-d (Tc=164 K, HP) Vicinity of AF order, non-Fermi liquid in the normal state
Iron based superconductors FeAs-based and FeSe-based superconductors Tetragonal or orthorhombic,layered SmFeAsO1-xFx (Tc=55 K) Vicinity of AF order, moderate correlation, multiband or multi-orbital
Organic superconductors k-(BEDT-TTF)2Cu(NCS)3, etc. k-(BEDT-TTF)2Cu(NCS)3 (Tc=10.4 K) Vicinity of AF order, moderate correlation
Table 1  Brief categorization and the highest transition temperatures of different superconducting families
Fig.2  Several kinds of typical cuprate superconductors (A) and the commonly shared CuO2 planes (B)
Fig.3  The skeleton structures of three kinds of the Hg-based cuprates with 1, 2 and 3 layers of CuO2 planes in one unit cell
Fig.4  The electronic phase diagram of cuprate superconductors
Fig.5  The Brillouin zone of the cuprate superconductors. This is an illustration of the scattering of paired electrons with opposite momentum
Fig.6  The phase diagram of mixed (vortex) state. In the high temperature region, the vortex system will change from solid to liquid. The low field region represents the Meissner state. In the low temperature region, the vortex line (or pancake) can hop between two neighbor pinning centers through a quantum tunneling process
Fig.7  The temperature dependence of the irreversibility line of the REBa2Cu3O7-d (REBCO, RE represents Y or other rare earth elements), Bi2Sr2CaCu2O8 (Bi-2212) and Bi2Sr2Ca2Cu3O12 (Bi-2223)
Fig.8  Schematic show of the deposition process of coating conductor of REBa2Cu3O7-d (RE=Y and Gd, Sm, Nd)
Fig.9  The skeleton of the atomic structure (a) LaFeAsO and (b) BaFe2As2
Fig.10  Known FeAs- and NiAs-based superconductors
Fig.11  Upper critical fields of iron based superconductors and other high temperature (YBaCuO) and practical superconductors[45]
Fig.12  Schematic show of the structure (a) and the top view (b) of MgB2
Fig.13  The Fermi surface of the MgB2 superconductor
Fig.14  Comparison of the electronic phase diagram of(upper) cuprate and (bottom) iron based superconductors
1 Poole C P, Handbook of Superconductivity, New York: Academic Press, 2000
2 J. G. Bednorz, K. A. Müller,Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys., 64(2), 189(1986)
3 ZHAO Zhongxian, CHEN Liquan, YANG Qiansheng, et al., Chinese Science Bulletin, 6(32), 412(1987)
3 (赵忠贤, 陈立泉, 杨乾声等, Ba-Y-Cu 氧化物液氮温区的超导电性, 科学通报, 6(32), 412(1987))
4 M. K. Wu, J. R. Ashburn, C. J. Torng,et al., Superconductivity at 93K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett., (58), 908(1987)
5 ZHOU Wuzong, LIANG Weiyao, Fundamental Research in High Tc Superconductivity (Shanghai: Shanghai Science and Technology Press , 1996)
5 (周午纵, 梁维耀, 高温超导基础研究 (上海: 上海科学技术出版社, 1996))
6 D. J. Scalapino,A common thread: The pairing interaction for unconventional superconductors, Rev. Mod. Phys., (84), 1383(2001)
7 D. M. Newns, C. C. Tsuei,Fluctuating Cu-O-Cu bond model of high-temperature superconductivity, Nature Phys., (3), 184(2007)
8 T. Timusk, B. Statt,The pseudogap in high-temperature superconductors: an experimental survey, Rep. Prog. Phys., 62(1), 61(1999)
9 V. J. Emery, S. A. Kivelson,Importance of phase fluctuations in superconductors with small superfluid density, Nature, (374), 434(1995)
10 Z. A .Xu, N. P . Ong, Y. Wang, et al., Vortex-like excitations and the onset of superconducting phase fluctuation in underdoped La2-xSrxCuO4, Nature, (406), 486(2000)
11 H. H. Wen, G. Mu, H. Luo, et al., Specific-heat measurement of a residual superconducting state in the normal state of underdoped Bi2Sr2?xLaxCuO6+δ cuprate superconductors, Phys. Rev. Lett., 2009, (103), 067002
12 Lee P A,Nagaosa N, Wen X G, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Mod. Phys., 2006, (78), 17
13 P. W. Anderson, Personal history of my engagement with cuprate superconductivity,1986-2010.Int. J. Mod. Phys. B, (25), 1(2011)
14 Kawakami T, Shibauchi T, Terao Y, et al., Evidence for universal signatures of zeeman-splitting-limited pseudogaps in Superconducting electron- and hole-doped cuprates, Phys. Rev. Lett., (95), 017001(2005)
15 C. C. Tsuei, J. R. Kirtley,Pairing symmetry in cuprate superconductors, Rev. Mod. Phys., (72), 969(2000)
16 H. F. Fong, B. Keimer, P .W. Anderson, et al., Phonon and magnetic neutron scattering at 41 meV in YBa2Cu3O7, Phys. Rev. Lett., (75), 316(1995)
17 A. Lanzara, P. V. Bogdanov, X. J. Zhou, et al., Evidence for ubiquitous strong electron-phonon coupling in high-temperature superconductors, Nature, (412), 510(2001)
18 G. Blatter, V. M. Feigel’man, V. B. Geshkenbein, et al., Vortices in high-temperature superconductors, Rev. Mod. Phys., (66), 1125(1994)
19 WEN Haihu,Flux dynamics and vortex phase diagram of cuprate super-conductors (I, II), Physics, 35(1, 2), 16, 111(2006)
19 (闻海虎, 高温超导体磁通动力学和混合态相图(I, II), 物理, 35(1, 2), 16, 111(2006))
20 D. C. Larbalestier, J. Jiang, U. P. Trociewitz, et al., Isotropic round-wire multifilament cuprate superconductor for generation of magnetic fields above 30 T, Nature Materials, (13), 375(2014)
21 Y. Kamihara, T. Watanabe, M. Hirano, et al., Iron-based layered superconductor La[O1-xFx]FeAs (x = 0.05-0.12) with Tc = 26 K, J. Am. Chem. Soc., 130(11), 3296(2008)
22 X. H. Chen, T. Wu, G. Wu, et al., Superconductivity at 43 K in SmFeAsO1-xFx, Nature, (453), 761(2008)
23 Z. A. Ren, W. Lu, J. Yang, et al., Superconductivity at 55K in iron-based F-doped layered quaternary compound Sm[O1-xFx]FeAs, Chin. Phys. Lett., (25), 2215(2008)
24 De La Cruz C, Q. Huang, J .W. Lynn, et al., Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems, Nature, (453), 899(2008)
25 Mazin I I, Singh D J, Johannes M D, et al., Unconventional superconductivity with a sign reversal in the order parameter of LaFeAsO1?xFx, Phys. Rev. Lett., 101, 057003(2008)
26 K. Kuroki, S. Onari, R. Arita, et al., Unconventional pairing originating from the disconnected fermi surfaces of superconducting LaFeAsO1?xFx, Phys. Rev. Lett., (101), 087004(2008)
27 H. Ding, P. Richard, K. Nakayama, et al., Observation of fermi-surface dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2.EPL, 83(4), 47001(2008)
28 T. Hanaguri, S. Niitaka, K. Kuroki, et al., Unconventional s-wave superconductivity in Fe (Se, Te), Science, 328(5977), 474(2010)
29 A. D. Christianson, E. A. Goremychkin, R. Osborn, et al, Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering, Nature, (456), 930(2008)
30 H.Yang, Z.Wang, D.Fang, et al., In-gap quasiparticle excitations induced by non-magnetic Cu impurities in Na(Fe0.96Co0.03Cu0.01)As revealed by scanning tunnelling spectroscopy, Nature Communications, (4), 2749(2013)
31 J. P. Hu, H.Ding,Local antiferromagnetic exchange and collaborative Fermi surface as key ingredients of high temperature superconductors, Scientific Reports, (2), 381(2012)
32 S. Onari, H. Kontani,Violation of anderson’s theorem for the sign-reversing s-wave sate of iron-pnictide superconductors, Phys. Rev. Lett., (103), 177001(2009)
33 H. H. Wen,Developments and perspectives of iron-based high-temperature superconductors, Adv. Mat., 20(19), 3764(2008)
34 C. W. Chu,High-temperature superconductivity: Alive and kicking, Nature Phys., (5), 787(2009)
35 Z. A. Ren, Z. X. Zhao,Research and prospects of iron-based superconductors, Adv. Mat., 21(45), 4584(2009)
36 H. H. Wen,S, L. Li, Materials and novel superconductivity in iron pnictide superconductors, Annu. Rev. Cond. Mat.Phys., (2), 121(2011)
37 G. R. Stewart,Superconductivity in iron compounds, Rev. Mod.Phys., (83), 1589(2011)
38 P. J. Hirschfeld, M. M. Korshunov, I. I. Mazin,Gap symmetry and structure of Fe-based superconductors, Rep. Prog. Phys., 74(12), 124508(2011)
39 Q. Y. Wang, Z. Li, W. H. Zhang, et al., Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3, Chin. Phys. Lett., 29(3), 037402(2013)
40 S. L. He, J. F. He, W. H. Zhang, et al., Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films, Nature Materials, 12(7), 605(2013)
41 S. Tan, Y. Zhang, M. Xia, et al., Interface-induced superconductivity and strain-dependent spin density waves in FeSe/SrTiO3 thin films, Nature Materials, 12(7), 634(2013)
42 W. H. Zhang, Y. Sun, J. S. Zhang, et al., Direct observation of high-temperature superconductivity in one-unit-cell FeSe films, Chin. Phys. Lett., 31(1), 017401(2014)
43 W. Si, S. J. Han, X. Shi, et al., High current superconductivity in FeSe0.5Te0.5 coated conductors at 30 tesla, Nature Comm., 4, 1347(2013)
44 X. P. Zhang, C. Yao, H. Lin, et al., Realization of practical level current densities in Sr0.6K0.4Fe2As2 tape conductors for high-field applications, Appl. Phys. Lett., 104, 202601(2014)
45 C. Tarantini, A. Gurevich, J. Jaroszynski, et al., Significant enhancement of upper critical fields by doping and strain in iron-based superconductors, Phys. Rev. B, 84, 184522(2011)
46 J. Nagamatsu, N. Nakagawa, T. Muranaka, et al., Superconductivity at 39 K in magnesium diboride, Nature, (410), 63(2001)
47 H. J. Choi, D. Roundy, H. Sun, et al., The origin of the anomalous superconducting properties of MgB2, Nature, (418), 758(2002)
[1] PAN Guoqiang HE Zhenhui XIA Jiansheng ZHANG Han QIAN Yitai CHEN Zuyao LIU Shuanghuai ZHANG Qirui (University of Science and Technology of China). THE RELATIONSHIP BETWEEN THE OXYGEN CONTENT AND SUPERCONDUCTIVITY IN YBa_2Cu_3O_x(6[J]. 材料研究学报, 1989, 3(3): 242-244.
No Suggested Reading articles found!