Please wait a minute...
Chin J Mater Res  2010, Vol. 24 Issue (2): 182-186    DOI:
论文 Current Issue | Archive | Adv Search |
Preparation and Characterization of Silica/Poly (Styrene–co–acrylic Acid) Core–shell Composite Particles
DU Lijun1; QIN Wei1; JIANG Binbo1; WU Wenqing2; WANG Jingdai1; YANG Yongrong1
1.State Key Laboratory of Chemical Engineering; Department of Chemical and Biochemical Engineering;
Zhejiang University; Hangzhou 310027
2. SINOPEC Tianjin Company; Tianjin 300271
Cite this article: 

DU Lijun QIN Wei JIANG Binbo WU Wenqing WANG Jingdai YANG Yongrong. Preparation and Characterization of Silica/Poly (Styrene–co–acrylic Acid) Core–shell Composite Particles. Chin J Mater Res, 2010, 24(2): 182-186.

Download:  PDF(637KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SiO2/PSA core–shell particles were prepared by silica (SiO2) coated with poly(styrene–co–acrylic acid) (PSA) membrane which was performed based on phase inversion principles. Non–solvent was introduced into the mixture of SiO2 and PSA solution by vapor phase instead of liquid phase in the traditional way, in order to avoid the aggregation of particles. The resulting core–shell particles were characterized by Fourier transfer infrared spectrometry (FTIR), scanning electron microscopy (SEM), laser scattering particle analyzer, thermogravimetric analysis, mercury injection and nitrogen adsorption/desorption isotherms. The results showed that SiO2/PSA composite particles obtained core–shell structure and the surface morphologies were regulated by the concentration of PSA solution. Compared to the SiO2 particles, the porosity, surface area, pore volume and pore diameter of SiO2/PSA core–shell composite particles significantly decreased because of the dense PSA shell on silica.

Key words:  inorganic non–metallic materials        composite particles       core–shell particles       phase inversion       pore structure     
Received:  17 December 2009     
Fund: 

Supported by National Science Foundation of China Nos20776124, 20736011, and the National High Technology Research and Development Program of China No.2007AA030208.

URL: 

https://www.cjmr.org/EN/     OR     https://www.cjmr.org/EN/Y2010/V24/I2/182

1 WU Tianbin, KE Yangchuan, WANG Yuehong, DONG Peng, The preparation of monodisperse SiO2/PS composites particles, Acta Polymerica Sinica, 2, 289(2005)
(吴天斌, 柯扬船, 王月红, 董 鹏, 单分散SiO2/PSA复合粒子的制备, 高分子学报,  2, 289(2005))
2 OU Yuchun, FANG Xiaoping, GUO Tingtai, FENG Yupeng, A new technique for preparation of rigid particle toughening and reinforcing polymer composites, Chinese Journal of Materials research, 15, 110(2001)
(欧玉春, 方晓萍, 郭庭泰, 冯宇鹏, 刚性粒子增强增韧聚合物复合材料的制备新技术, 材料研究学报,  15, 110(2001))
3 C.B.Liu, T.Tang, B.T.Huang, Preparation and application of a novel core–shell–particle–supported zirconocene catalyst, J Polym Sci, Part A: Polym Chem, 39, 2085(2001)
4 Y.Guo, X.Q.Zhang, W.M.Dong, Organic–inorganic hybrid supported zirconocene catalysts for ethylene polymerization, J. Mol. Catal. A: Chem., 237, 45(2005)
5 D.Zhang, G.X.Jin, Radical copolymerization of diiminedibromidenickel (II) functionalized olefin with styrene: synthesis of polymer–incorporated nickel (II) α–diimine catalysts for ethylene polymerization, Appl. Catal. A, 262, 13(2004)
6 S.Kaur, G.Singh, U.C.Makwana, V.K.Gupta, Immobilization of titanium tetrachloride on mixed support of MgCl2 ·xEB/poly(methyl acrylate–co–1–octene): catalyst for synthesis of broad MWD polyethylene, Catal Lett, 87, 132(2009)
7 M.Ulbricht, Advanced functional polymer membranes, Polymer, 47, 2217(2006)
8 H.Zhang, H.G.Ni, X.P.Wang, X.B.Wang, W.Zhang, Effect of chemical groups of polystyrene membrane surface on ist pervaporation performance, J. Membr. Sci., 281, 626(2006)
9 Y J Wang, Y Xiong, F Chen, G S Luo. Preparation of core–shell glass bead/polysulfone microspheres with two–step sol–gel process. J. Appl. Polym. Sci., 99, 3365(2006)
10 WANG Jingdai, DU Lijun, LI Wei, FAN Lina, JIANG Binbo, HUANG Zhengliang, YANG Yongrong, The preparation of inorganic/organic composite particles with core-shell structure, China Patent, 200910098802.X, 2009–05–18.
(王靖岱, 杜丽君, 历 伟, 范丽娜, 蒋斌波, 黄正梁, 阳永荣, 具有核壳结构的无机/有机复合载体的制备方法, 中国专利, 200910098802.X, 2009--05--18)
11 K.Zhang, W.Wu, H.Meng, K.Guo, J.F.Chen, Pickering emulsion polymerization: Preparation of  Polystyrene/nano–SiO2 composite microspheres with core–shell structure, Powder Technol., 190, 393(2009)
12 H.Y.Lee, S.P.Rwei, L.Wang, P.H.Chen, Preparation and characterization of core-shell polyaniline-polystyrene sulfonate@Fe3O4 nanoparticles, Mater. Chem. Phys., 112, 805(2008)
13 C.Stropnik, L.Germic, B.Zerjal, Morphology variety and formation mechanisms of polymeric membranes prepared by wet phase inversion, J. Appl. Polym. Sci., 61, 1821(1996)
14 H.L.Luo, J.Sheng, Y.Z.Wan, Preparation and characterization of TiO2/polystyrene core-shell nanospheres via microwave–assisted emulsion polymerization, Mater. Lett., 62, 37(2008)
15 T.J.Yao, Q.Lin, K.Zhang, D.F.Zhao, H.Lv, J.H.Zhang, B.Yang, Preparation of SiO2@polystyrene@polypyrrole sandwich composites and hollow polypyrrole capsules with movable SiO2 spheres inside, J. Colloid Interface Sci., 315, 434(2007)
16 T.H.Young, L.W.Chen, Pore formation mechanism of membranes from phase inversion process, Desalination, 103, 233(1995)

[1] Xiaolu GUO,Liang WU,Huisheng SHI. Effects of Different Heavy Metals on Fly Ash-based Geopolymer[J]. 材料研究学报, 2017, 31(6): 437-444.
[2] Xiaolu GUO,Huisheng SHI. Durability and Pore Structure of Nano-particle-modified Geopolymers of Waste Brick Powder-class C Fly Ash[J]. 材料研究学报, 2017, 31(2): 110-116.
[3] Yugeng LI,Qinglin JIN,Tianwu YANG,Zaijiu LI. Influence of Solidification Rate on Pore Structure of Lotus-type Porous Metals[J]. 材料研究学报, 2014, 28(6): 476-480.
[4] HOU Jiaojiao** MEI Fuding. Research on Relationship between Macroscopic Properties and Pore Sturcture of Phosphogypsum-based Material[J]. 材料研究学报, 2013, 27(6): 631-640.
[5] ZHANG Jingxian HONG Qiuhong SUN Xuetong ZHANG Xinping. Preparation and Properties of Porous TiO2/HA/TiO2 Composite Coating[J]. 材料研究学报, 2012, 26(6): 572-576.
[6] ZHANG Wenjie CHEN Jinlei WANG Hong HE Hongbo. Effects of Calcination Temperature on the Photocatalytic Activity of In–TiO2 Nano–material[J]. 材料研究学报, 2012, 26(6): 561-566.
[7] FANG Yihang, YANG Qinghua, LI Hongwei, WANG Huanping, MA Hongping, XU Shiqing. Low Temperature Sintering and Performance of CBS/Al2O3 Glass–Ceramic Doped With Li2CO3[J]. 材料研究学报, 2012, 26(5): 515-520.
[8] LIN Xiaoyan YANG Weihua YANG Wutao WANG Meiqing. Preparation and Characterization of Ti-Supported PbO2 Electrode Doped with Rare Earth Er[J]. 材料研究学报, 2012, 26(4): 367-371.
[9] GAO Jiacheng WU Shufang YANG Xiaodong CHANG Xin. Effect of Pre–oxidation Powders on Sintering Properties of Uranium Dioxide Pellets[J]. 材料研究学报, 2012, 26(3): 279-283.
[10] LIU Jia NI Wen YU Miao. Preparation of High–strength Concrete by Using Fly Ash and Iron Ore Tailings as Major Raw Materials[J]. 材料研究学报, 2012, 26(3): 295-301.
[11] WEI Xiaoqing NI Xingyuan SHEN Jun ZU Guoqing ZHANG Zhihua DU Ai. Synthesis of Thermal Insulation Material Alumina Aerogels and Thermal Properties[J]. 材料研究学报, 2012, 26(3): 261-266.
[12] ZHANG Wenjie YANG Bo. Synthesis and Photocatalytic Properties of B–doped TiO2[J]. 材料研究学报, 2012, 26(2): 149-154.
[13] GAO Fangliang LI Shengying CHEN Hongji WU Zhonghua LI Zhihong. Pore Structural Analysis on Poly(Methyl)silsesquioxane Porous Thin Films by Synchrotron Radiation Small Angle X–ray Scattering[J]. 材料研究学报, 2012, 26(1): 68-72.
[14] MENG Jinhong CHEN Weihong LIU Yu SUN Jie CAO Xiaohui WANG Wenju YU Mingxun. Synthesis of the Plate–shaped Barium Ferrites by the Second Chemical Co–precipitation Method and Investigation of the Magnetic Properties[J]. 材料研究学报, 2012, 26(1): 107-112.
[15] YANG Wutao YANG Weihua FU Fang. Preparation and Characterization of PbO2 Electrode Modified With a Mixture of PEG and CPB[J]. 材料研究学报, 2012, 26(1): 8-12.
No Suggested Reading articles found!