Please wait a minute...
材料研究学报  2009, Vol. 23 Issue (5): 541-545    
  研究论文 本期目录 | 过刊浏览 |
316L不锈钢的高温疲劳蠕变行为和寿命预测
董杰1;2; 陈学东1; 范志超1; 江慧丰1;2; 姜恒1; 陆守香2
1.合肥通用机械研究院国家压力容器与管道安全工程技术研究中心  合肥 230031
2.中国科学技术大学安全科学与工程系 合肥 230027
High temperature fatigue creep behavior and life prediction of 316L stainless steel under 2-step load
DONG Jie 1;2;  CHEN Xuedong 1;  FAN Zhichao1;  JIANG Huifeng 1;2;  JIANG Heng1;  LU Shouxiang2
1.National Technology Research Center on Pressure Vessel and Pipeline Safety Engineering of Hefei General Machinery Research Institute; Hefei 230031
2.Department of Safety Science and Engineering; University of Science and Technology of China; Hefei 230027
引用本文:

董杰 陈学东 范志超 江慧丰 姜恒 陆守香. 316L不锈钢的高温疲劳蠕变行为和寿命预测[J]. 材料研究学报, 2009, 23(5): 541-545.
, , , , , . High temperature fatigue creep behavior and life prediction of 316L stainless steel under 2-step load[J]. Chin J Mater Res, 2009, 23(5): 541-545.

全文: PDF(940 KB)  
摘要: 

进行316L不锈钢在单级和两级载荷作用下的高温疲劳蠕变试验, 研究了载荷历程效应对材料行为的影响. 在已有统一的疲劳蠕变损伤演化模型基础上, 得到了316L高温单级载荷作用下非线性损伤演化曲线. 同时, 建立了一种耦合载荷历程效应的多级疲劳蠕变载荷作用下的材料破坏准则. 基于该破坏准则, 结合材料的非线性损伤模型对316L不锈钢高温两级载荷作用下的疲劳蠕变寿命进行了预测, 预测结果与试验数据符合得比较好.

关键词 材料科学基础科学 寿命预测 破坏准则 疲劳蠕变 载荷历程    
Abstract

High temperature fatigue creep test of 316L stainless steel under 1-step and 2-step load was conducted, the influence of the load history on material behavior was investigated emphatically. On the basis of the uniform fatigue creep damage evolution model, the nonlinear damage evolution curves of 316L steel under 1-step load at high temperature were obtained. A modified failure rule coupled with the load history effect under multi-step load was proposed. High temperature 316L steel fatigue creep life under 2-step load was predicted by the failure rule and the nonlinear damage model. The predicted results were in good agreement with the experimental ones.

Key wordsfoundational discipline in materials science    life prediction    failure rule    fatigue creep    load history
收稿日期: 2008-11-28     
ZTFLH: 

TG113

 
基金资助:

“十一五”国家科技支撑计划专题2006BAK02B02-02和安徽省自然科学基金070415223资助项目.

1 CHEN Nianjin, GAO Zengliang, LEI Yuebao, Studies on the law of fatigue and creep for 316L stainless steel at elevated temperature, Pressure Vessel Technology, 23(6),6(2006)
(陈年金, 高增粱, 雷月葆, 316L钢高温疲劳蠕变规律研究, 压力容器,  23(6), 6(2006))
2 L.Zrnik, J.Semenak, V.Vrchovinsky, etc, Influence of cycling frequency on cyclic creep characteristics of nickel base single-crystal superalloy, Material Science and Engineering A, 319-321, 637(2001)
3 Z.C.Fan, X.D.Chen, L.Chen, etc, Fatigue-creep behavior of 1.25Cr0.5Mo steel at high temperature and its life prediction, International Journal of Fatigue, 29(6), 1174(2007)
4 JIANG Jialing, CHEN Ling, FAN Zhichao, Discussion of life prediction for fatigue-creep interaction, Chinese Journal of Materials Research, 21(5), 537(2007)
(蒋家羚, 陈 凌, 范志超等, 疲劳-蠕变交互作用的寿命预测探讨, 材料研究学报,  21(5), 537(2007))
5 T.Goswami, Low cycle fatigue life prediction-a new model, International Journal of Fatigue, 19(2),109(1997)
6 YANG Tiecheng, CHEN Ling, FAN Zhichao, Life prediction for fatigue-creep interaction of 1.25Cr0.5Mo steel at elevated temperature, Pressure Vessel Technology, 22(9), 8(2005)
(杨铁成, 陈  凌, 范志超, 1.25Cr0.5Mo钢高温疲劳蠕变交互作用的寿命预测, 压力容器,  22(9), 8(2005))
7 A.Fatemi, L.Yang, Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials, International Journal of Fatigue, 20(1), 9(1998)
8 X.L.Zheng, Overload effects on fatigue behaviour and life prediction of low-carbon steels, International Journal of Fatigue, 17(5), 331(1995)
9 R.Kumar, A.Kumar, K.Singh, Effect of rest time after application of single overload cycle on fatigue life, Engineering Fracture Mechanics, 54(1), 147(1996)
10 M.Walter, J.Aktaa, M.Lerch, Failure behaviour of EUROFER 97 in the low-cycle fatigue region under multistep loading, International Journal of Fatigue, 30(3), 568(2008)
11 S.G.Hong, S.B.Lee, T.S.Byun, Temperature effect on the low-cycle fatigue behavior of type 316L stainless steel: Cyclic non-stabilization and an invariable fatigue parameter, Material Science and Engineering A, 457(1-2), 139(2007)
12 GUO Yangbo, TANG Zhiping, A Dislocation-mechanicsbased constitutive model for dynamic strain aging, Acta Mechanical Solid Sinica, 23(3), 251(2002)
(郭扬波, 唐志平, 一种基于位错机制的动态应变时效模型, 固体力学学报,  23(3), 251(2002))
13 S.G.Hong, K.O.Lee, S.B.Lee, Dynamic strain aging effect on the fatigue resistance of type 316L stainless steel, International Journal of Fatigue, 27(10-12), 1420(2005)
14 S.G.Hong, S.B.Lee, Dynamic strain aging under tensile and LCF loading conditions, and their comparison in cold worked 316L stainless steel, Journal of Nuclear Materials, 328(2-3), 232(2004)
15 T.W.Kim, D.H.Kang, J.T.Yeom, Continuum damage mechanics-based creep  fatigue-interacted life prediction of nickel-based superalloy at high temperature, Scripta Materialia, 57(12), 1149(2007)
16 CHEN Zhiping, JIANG Jialing, CHEN Ling, Research on fatigue-creep interaction damage of steel 1.25Cr0.5Mo, Acta Metallurgica Sinica, 43(6), 637(2007)
(陈志平, 蒋家羚, 陈 凌, 1.25Cr0.5Mo钢疲劳-蠕变交互作用的损伤研究, 金属学报,  43(6), 637(2007))

[1] 丁智平 王腾飞 李明 陈吉平. 镍基单晶合金多轴非比例加载低周疲劳单胞模型[J]. 材料研究学报, 2011, 25(5): 455-463.
[2] 宋波 傅倩 刘小云 庄启昕 韩哲文. 环境因素对PBO纤维老化的影响和储存寿命预测[J]. 材料研究学报, 2010, 24(5): 487-492.
[3] 宋名实;胡桂贤;许海燕. 硫化橡胶贮存和老化寿命的预测方法[J]. 材料研究学报, 1991, 5(3): 255-260.