Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (8): 561-571    DOI: 10.11901/1005.3093.2019.095
ARTICLES Current Issue | Archive | Adv Search |
Effect of Deep Cryogenic Treatment on Mechanical Property and Microstructure of a Low Carbon High Alloy Martensitic Bearing Steel during Tempering
Donghui LI1,Zhimin LI2,Maoguo XIAO1,Shaohong LI1(),Kunyu ZHAO1,Maosheng YANG3
1. School of Materials Science and Engineering,Kunming University of Science and Technology,Kunming 650093, China
2. Yunnan College of Business Management, Kunming 650106,China
3. Institute for Special Steels,Central Iron and Steel Research Institute,Beijing 100081, China
Cite this article: 

Donghui LI, Zhimin LI, Maoguo XIAO, Shaohong LI, Kunyu ZHAO, Maosheng YANG. Effect of Deep Cryogenic Treatment on Mechanical Property and Microstructure of a Low Carbon High Alloy Martensitic Bearing Steel during Tempering. Chinese Journal of Materials Research, 2019, 33(8): 561-571.

Download:  HTML  PDF(24885KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The hardness and microstructure evolution of a low carbon and high alloy martensite bearing steel after deep cryogenic treatment were studied by means of Rockwell hardness tester, X-ray diffractometer, and scanning electron microscope and transmission electron microscope. The results show that the deep cryogenic treatment promotes the transformation of retained austenite to martensite, which leads to an increase in the hardness after quenching. In addition, the hardness of the steel subjected to deep cryogenic treatment was higher than that of the non-cryogenically treated one during tempering. The deep cryogenic treatment causes the carbon atoms in the steel to segregate and precipitate as carbides during the tempering process. Compared with the steel without deep cryogenic treatment, the carbon content in the martensite matrix of the steel subjected to deep cryogenic treatment was lower after tempering, which indicated that more carbides were precipitated in the deep cryogenic treated steel during the tempering process. According to the results of transmission electron microscope images, a large number of nano-sized M2C and M6C carbides precipitated from the martensite matrix during tempering, which may be the main reason for the maintenance of high hardness of the steel after longtime tempering.

Key words:  metallic materials      high alloy steel      deep cryogenic treatment      carbide      retained austenite     
Received:  03 February 2019     
ZTFLH:  TG430.40  
Fund: Supported by National Natural Science Foundation of China(No.51761022)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.095     OR     https://www.cjmr.org/EN/Y2019/V33/I8/561

CCrMoCoNiVWFe
0.1~0.1513.0~15.04.0~5.012.0~13.01.5~2.50.5~1.00.5~1.0Bal.
Table 1  Chemical composition of tested steel (%, mass fraction)
Heat treatment processesHardness (HRC)
Quenching (Q) at 1050℃39.00
Quenching at 1050℃+deep cryogenic treatment (QC) 20 h45.50
Quenching at 1050℃+ tempering 100 h (QT) at 510℃52.00
Quenching at 1050℃+deep cryogenic treatment 20 h+tempering 100 h at 510℃ (QCT)55.50
Table 2  Hardness of tested steel after different heat treatment processes
Fig.1  Hardness curves of tested steel during tempering at 510℃ after quenching and deep cryogenic treatment
Fig.2  SEM images of tested steel after different heat treatments (a) Q; (b) QC; (c) QT; (d) QCT
Fig.3  EDX spectrum of carbides in the tested steel
ElementsCMoFeWCrCo
P118.4713.6052.418.523.503.50
Table 3  Mass fraction of each element in the carbide (%)
Fig.4  TEM images of tested steel after different heat treatments (a) QT; (b) QCT
Fig.5  XRD diffraction spectrum of tested steel after different heat treatment processes
Heat treatment processQQTQCQCT
Austenite content23.9522.6010.259.56
Table 4  Retained austenite content in tested steel after different heat treatments (%, mass fraction)
Fig.6  TEM images and diffraction patterns of tested steel after different heat treatments (a) Q; (b) QT; (c) QCT
Fig.7  Residual austenite size in TEM microstructure of experimental steel after different thermal processes
Fig.8  XRD spectrum of M (211) after Gaussian fitting
Heat treatment processQQCQTQCT
Content of martensite0.09330.09270.08860.0813
Table 5  Carbon content of martensite in tested steel after different cryogenic tempering treatments (%, mass fraction)
Fig.9  Morphology and Calibration of spheroidal carbides and electron diffraction patterns in tested steel after different heat treatment processes (a) QT; (b) QCT
Fig.10  Morphology and Calibration of acicular carbides and diffraction patterns precipitated in tested steel after different heat treatment processes (a) QC; (b) QCT
[1] Zhao K L, Liu Y B, Yu X F, et al. Effect of solid Solution- and mesothermal phase transition- treatment on microstructure and mechanical property of ball bearing steel 8Cr4Mo4V [J]. Chinese Journal of Materials Research, 2018, 32(3): 200
[1] 赵开礼, 刘永宝, 于兴福等. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响 [J]. 材料研究学报, 2018, 32(3): 200)
[2] Sun X F, Ge Y L, Jiang M, et al. Laser surface melting of GCr15 bearing steel [J]. Chinese Journal of Materials Research, 1990, 4(6): 493
[2] 孙晓峰, 葛云龙, 姜 明等. GCr15轴承钢激光表面熔凝强化的研究 [J]. 材料研究学报, 1990, 4(6): 493)
[3] Tala-Ighil N, FillonN N, Maspeyrot P. Effect of textured area on the performances of a hydrodynamic journal bearing [J]. Tribology International, 2011, 44(3): 211
[4] Shiozawa K., Hasegawa T., Kashiwagi Y., et al. Very high cycle fatigue properties of bearing steel under axial loading condition[J]. International Journal of Fatigue, 2009, 31(5): 880
[5] Huo Z P, Yang M S, Zhao K U, et al, Microstructure evolution research of Cr-Co-Mo-Ni gear and bearing steel under action of temperature and stress coupling [J]. Iron & Steel, 2014, 49(4): 80
[5] 侯智鹏, 杨卯生, 赵昆渝等. 高温与应力耦合作用下Cr-Co-Mo-Ni齿轮轴承钢微观组织演变 [J]. 钢铁, 2014, 49(4): 80)
[6] Sugimoto S, Honda J, Ohtani Y, et al. Improvements of the magnetic properties of equiaxed Fe-Cr-Co-Mo hard magnets by two-step thermomagnetic treatment [J]. IEEE Transactions on Magnetics, 1987, 23(5): 3193
[7] Ren Y Q, Shang C J, Zhang H W, et al. Effect of retained austenite on toughness and plasticity of 0.23C-1.9Mn-1.6Si steel. [J]. Chinese Journal of Materials Research, 2014, 28(4): 274
[7] 任勇强, 尚成嘉, 张宏伟等. 0.23C-1.9Mn-1.6Si钢中的残留奥氏体对韧塑性的影响 [J]. 材料研究学报, 2014, 28(4): 274)
[8] Sri Siva R, Arockia Jaswin M, Mohan Lal D. Enhancing the wear resistance of 100Cr6 bearing steel using cryogenic treatment [J]. Tribology Transactions, 2012, 55(3): 387
[9] Song W, Appen J V, Choi P, et al. Atomic-scale investigation of ε and θ precipitates in bainite in 100Cr6 bearing steel by atom probe tomography and ab initio calculations [J]. Acta Materialia, 2013, 61(20): 7582
[10] Xie C, Zhou L M, Min N, et al. Effect of deep cryogenic treatment on carbon partition of tempered high carbon high alloy tool steel SDC99 [J]. Chinese Journal of Materials Research, 2016, 30(11): 801
[10] 谢 尘, 周龙梅, 闵 娜等. 深冷处理对高碳高合金工具钢SDC99回火过程碳配分的影响 [J]. 材料研究学报, 2016, 30(11): 801)
[11] Zhang Y, Gao X Z, Zhang B, et al. Effect of deformation temperature on microstructure evolution of S30408 austenitic stainless steel for cold-stretching cryogenic vessels [J]. Chinese Journal of Materials Research, 2014, 28(9): 682
[11] 张 颖, 高晓哲, 张 滨等. 变形温度对应变强化深冷容器用S30408不锈钢组织结构演化的影响 [J]. 材料研究学报, 2014, 28(9): 682 )
[12] Ge Y H. Influence on structure and mechanical properties of GCr15 bearing steel with cryogenic treatment [J]. Materials Review, 2013, 27(s2): 334
[12] 葛艳辉. 深冷处理对GCr15轴承钢组织及力学性能的影响 [J]. 材料导报, 2013, 27(s2): 334)
[13] Li S Y, Liu X Z, He L L. Investigation of the influence of cryogenic treatment on the stability of bearings [J]. Journal of Gansu University of Technology, 2001, 27(2): 17
[13] 李士燕, 刘秀芝, 何力力. 深冷处理对轴承稳定性影响的研究 [J]. 兰州理工大学学报, 2001, 27(2): 17)
[14] Zheng S J, Yang M S, Lei T, et al. Effect of cold treatment on microstructure and mechanical properties of 16Cr14Co12Mo5 bearing steel [J]. Iron & Steel, 2012, 47(12): 76
[14] 郑善举, 杨卯生, 雷霆等. 冷处理对16Cr14Co12Mo5轴承钢组织和性能的影响 [J]. 钢铁, 2012, 47(12): 76)
[15] Ren S, Zhang Y F, Xue F, et al. Enhanced surface mechanical properties of Cr12MoV using ultrasonic surface rolling process and deep cryogenic treatment [J]. Solid State Phenomena, 2018, 279: 143
[16] Zhou J, Jing L, Xu S, et al. Improvement in fatigue properties of 2024-T351 aluminum alloy subjected to cryogenic treatment and laser peening [J]. Surface & Coatings Technology, 2018: S0257897218-303396
[17] Zhao G H, Yu W P, Wei J X. Effect of deep cryogenic treatment on microstructures and mechanical property of GCr15 steel [J]. Development and Application of Materials, 2010, 25(1): 000026
[17] 赵国华, 于文平, 魏建勋. 深冷处理对GCr15组织和力学性能的影响 [J]. 材料开发与应用, 2010, 25(1): 000026-29
[18] Yan X G, Li D Y. Effects of the sub-zero treatment condition on microstructure, mechanical behavior and wear resistance of W9Mo3Cr4V high speed steel [J]. Wear, 2013, 302(1-2): 854
[19] De Moor E, Lacroix S, Clarke A J, et al. Effect of retained austenite stabilized via, quench and partitioning on the strain hardening of martensitic steels [J]. Metallurgical & Materials Transactions A, 2008, 39(11): 2586
[20] Ryu H B, Speer J G, Wise J P. Effect of thermomechanical processing on the retained austenite content in a Si-Mn transformation-induced-plasticity steel [J]. Metallurgical & Materials Transactions A, 2002, 33(9): 2811
[21] Bhadeshia H K D H, Edmonds D V. Tempered martensite embrittlement: Role of retained austenite and cementite [J]. Metal Science, 1979, 13(6): 325
[22] Leem D S, Lee Y D, Jun J H, et al. Amount of retained austenite at room temperature after reverse transformation of martensite to austenite in an Fe-13%Cr-7%Ni-3%Si martensitic stainless steel [J]. Scripta Materialia, 2001, 45(7): 767
[23] Emadoddin E, Akbarzadeh A, Petrov R, et al. Anisotropy of retained austenite stability during transformation to martensite in a TRIP-assisted steel [J]. Steel Research International, 2013, 84(3): 297
[24] Jumov G V K. Martensite crystal lattice, mechanism of austenite-martensite transformation and behavior of carbon atoms in martensite [J]. Metallurgical and Materials Transactions A, 1976, 7(7): 999
[25] Li C, Wang J L. Effect of pre-quenching on martensite-bainitic microstructure and mechanical properties of GCr15 bearing steel [J]. Journal of Materials Science, 1993, 28(8): 2112
[26] Su Y S, Li S X, Lu S Y, et al. Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue [J]. International Journal of Fatigue, 2017, 105
[27] Morito S, Tanaka H, Konishi R, et al. The morphology and crystallography of lath martensite in Fe-C alloys [J]. Acta Materialia, 2003, 54(19): 5323
[28] Li H, Yin T T, Liu Y. Effect of deep cryogenic treatment on performances of bearing steel GCr15 [J]. Bearing, 2015, (8): 41
[28] 李 辉, 尹甜甜, 刘 勇. 深冷处理对GCr15轴承钢性能的影响 [J]. 轴承, 2015, (8): 41)
[29] Molinari A, Pellizzari M, Gialanella S, et al. Effect of deep cryogenic treatment on the mechanical properties of tool steels [J]. Journal of Materials Processing Technology, 2001, 118(1): 350
[30] Das D, Dutta A K, Toppo V, et al. Effect of deep cryogenic treatment on the carbide precipitation and tribological behavior of D2 steel [J]. Advanced Manufacturing Processes, 2007, 22(4): 474
[31] Morikawa H., Komatsu H., Tanino M.. Effect of chromium upon coherency between M2C precipitates and α-iron matrix in 0.1C-10Ni-8Co-lMo-Cr steels [J]. Microscopy, 1973, (1):
[32] Zizzo G.. Efficient clearance of early apoptotic cells by human macrophages requires M2C polarization and MerTK induction [J]. Journal of Immunology, 2012, 189(7): 3508
[33] Lu J, Cao Q, Zheng D, et al. Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease [J]. Kidney International, 2013, 84(4): 745
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!