Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (2): 81-86    DOI: 10.11901/1005.3093.2018.398
Current Issue | Archive | Adv Search |
Liquid-Phase Synthesis and Electrocatalytic Oxidation of Ethanol of Palladium/Polyaniline-nanofibers
Dexin TAN1,Wei HU2,Suxian CHEN1,Jieting JIAN1,Lishan ZHOU1,Yanli WANG1()
1. School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang 524048, China
2. School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan 232001, China
Cite this article: 

Dexin TAN,Wei HU,Suxian CHEN,Jieting JIAN,Lishan ZHOU,Yanli WANG. Liquid-Phase Synthesis and Electrocatalytic Oxidation of Ethanol of Palladium/Polyaniline-nanofibers. Chinese Journal of Materials Research, 2019, 33(2): 81-86.

Download:  HTML  PDF(5337KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nanofibers of palladium(Pd)/polyaniline(PANI) were synthesized via liquid phase chemical oxidation in dark conditions with aniline as monomer, palladium chloride (PdCl2) as palladium precursor and ammonium persulfate as oxidant. The synthesized nanofibers were characterized by XRD, FESEM, TEM, SAED, HRTEM, FT-IR spectroscopy and UV-visible spectroscopy. Electrochemical performance of ethanol oxidation was also investigated on a glassy carbon electrode modified with Pd/PANI nanofibers. The results show that the length of Pd/PANI nanofibers can reach up to 500 nm with average diameters of 20 nm. Pd nanoparticles with the average diameter of 6 nm can uniformly distribute over the PANI fibers. The electrochemical active surface area (ECSA) of the Pd/PANI/GCE (54.76 m2/gPd) is nine times higher than that of commercial Pd/C catalyst (6.08 m2/gPd). The value of jf/jb of Pd/PANI/GCE is 1.192.

Key words:  composite      palladium (Pd)/polyaniline(PANI) nanofibers      liquid-phase synthesis      elec-trocatalytic oxidation      ethanol     
Received:  21 June 2016     
ZTFLH:  TB33  
Fund: National Natural Science Foundation of China(51303005);Guangdong Science and Technology Project(2017A030307028);Yangfan Plan of Guangdong Province of China(0003017011);the Research Initiation Foundation of the Lingnan Normal University(ZL1822);the Research Initiation Foundation of the Lingnan Normal University(ZL1604)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.398     OR     https://www.cjmr.org/EN/Y2019/V33/I2/81

Fig.1  XRD pattern of Pd/PANI nanofibers
Fig.2  FESEM and TEM images of Pd/PANI nanofibers (a) FESEM image, (b) high-magnification FESEM image, (c) TEM image and the corresponding SAED pattern (inset), and (d) HRTEM image
Fig.3  FTIR spectra of with different region of PANI (a) and Pd/PANI (b): (A) The region between 4000 and 500 cm?1 and (B) The region between 2000 and 1000 cm?1
Fig.4  UV-Visable spectra of (a) PANI and (b) Pd/PANI nanofibers
Fig.5  CV curves of Pd/PANI/GCE electrode in 1 mol/L KOH at a scan rate of 50 mV/S
Fig.6  CV curves of Pd/PANI/GCE electrode in 1 mol/L KOH+1 mol/L ethanol at a scan rate of 50 mV/S
Fig.7  Chronoamperometric curves of Pd/PANI/GCE electrode
[1] Moura Souza F, Nandenha J, Batista B L, et al. PdxN by electrocatalysts for DEFC in alkaline medium:Stability, selectivity and mechanism for EOR [J]. Int. J. Hydrogen Energ., 2018, 43(9): 4505
[2] Ao K L, Li D W, Yao Y X, et al. Electro-catalytic activity of composite films of Pd-doped bacterial cellulose nano-fibers for ethanol oxidation [J]. Chin. J. Mater. Res., 2018, 32(2): 155
[2] (敖克龙, 李大伟, 姚壹鑫等. 载钯细菌纤维素纳米纤维复合膜用于乙醇的电 催化氧化 [J]. 材料研究学报, 2018, 32(2): 155)
[3] Jiang Y, Yan Y C, Chen W L, et al. Single-crystalline Pd square nanoplates enclosed by {100} facets on reduce dgraphene oxide for formic acid electro-oxidation [J]. Chem. Commun., 2016, 52(99): 14204
[4] Wang X X, Yang J D, Yin H J, et al. “Raisin bun”-like nanocomposites of palladium clusters and porphyrin for superior formic acid oxidation [J]. Adv. Mater., 2013, 25(19): 2728
[5] Zhao R P, Fu G T, Zhou T G, et al. Multi-generation overgrowth induced synthesis of three-dimensinal highly Branched palladium tetrapods and their electrocatalytic activity for formic acid oxidation [J]. Nanoscale, 2014, 6(5): 2776
[6] Qiu X Y, Zhang H Y, Wu P S, et al. One-pot synthesis of freestanding porous palladium nanosheets as highly efficient electrocatalysts for formic acid oxidation [J]. Adv. Funct. Mater., 2017, DOI: 10.1002/adfm.201603852
[7] Chen D, Sun P C, Liu H, et al. Bimetallic Cu-Pd alloy multipods and their highly electrocatalytic performance for formic acid oxidation and oxygen reduction [J]. J. Mater. Chem. A., 2017, 5(9): 4421
[8] Wang X G, Zhu F C, He Y W, et al. Highly active carbon supported ternary PdSnPtx (x=0.1~0.7) catalysts for ethanol electro-oxidation in alkaline and acid media [J]. J. Colloid Interface Sci., 2016, 468(15): 200
[9] Wang M, Ma Z Z, Li R X, et al. Novel flower-like PdAu(Cu) anchoring on a 3D rGO-CNT sandwich-stacked framework for highly efficient methanol and ethanol electro-oxidation [J]. Electrochem. Acta., 2017, 227(10): 330
[10] Zhu F C, Ma G S, Bai Z C, et al. High activity of carbon nanotubes supported binary and ternary Pd-based catalysts for methanol,ethanol and formic acid electro-oxidation [J]. J. Power Source., 2013, 242(15): 610
[11] Li F M, Kang Y Q, Peng R L, et al. Sandwich-structured Au@polyallylamine@Pd nanostructures: tuning electronic property of Pd shell for electrocatalysis [J]. J. Mater. Chem. A., 2016, 4(31): 12020
[12] Silva J C M, De Souza R F B, Romano M A, et al. PtSnIr/C anode electrocatalysts: promoting effect in direct ethanol fuel cells [J]. Braz J. Chem. Soc., 2012, 23(6): 1146
[13] Xia Y Y, Liu N, Sun L, et al. Networked Pd(core)@polyaniline (shell) composite: Highly electro-catalytic ability and unique selectivity [J]. Appl. Surf. Sci., 2018, 428(15): 809
[14] Soleimani Lashkenari M, Rezai S, Fallah J, et al. Electrocatalytic performance of Pd/PANI/TiO2 nanocomposites for methanol electrooxidation in alkaline media [J]. Synthetic Met., 2018, 235(2): 71
[15] Prodromidis M I, Zahran E M, Tzakos A G, et al. Preorganized composite material of polyaniline epalladium nanoparticles with high electrocatalytic activity to methanol and ethanol oxidation [J]. Int. J. Hydrogen Energy, 2015, 40(21): 6745
[16] Zhang L F, Zhang J Z, Liu Y, et al. Effect of different acid dopant on electrochemical properties of polyaniline nanofibers [J]. Journal of Functional Polymers, 2015, 28(1): 40
[16] (张利锋, 张金振, 刘 毅等. 不同掺杂酸对纤维聚苯胺电化学性能的影响 [J].功能高分子学报, 2015, 28(1): 40)
[17] Chen Y, Li L Y, Zhang L, et al. In situ formation of ultrafine Pt nanoparticles on surfaces of polyaniline nanofibers as efficient heterogeneous catalysts for the hydrogenation reduction of nitrobenzene [J]. Colloid Polym. Sci., 2018, 296(3): 567
[18] Tan D X, Wang Y L. Visible-light-assisted SLCs template synthesis of sea anemone-like Pd/PANI nanocomposites with high electrocatalytic activity for methane oxidation in acidic medium [J]. Mater. Res. Express, 2018, DOI: org/10.1088/2053-1591/aab79d
[19] Pan H B, Wai C M. Facile sonochemical synthesis of carbon nanotube-supported bimetallic Pt-Rh nanoparticles for room temperature hydrogenation of arenes [J]. New J. Chem., 2011, 35(8): 1649
[20] Hatchett D W, Millick N M, Kinyanjui J M, et al. The electrochemical reduction of PdCl42- and PdCl62-inpolyaniline: influence of Pd deposit morphology on methanol oxidationinal-kalinesolution [J]. Electrochim. Acta., 2011, 56(17): 6060
[21] Bakhshali M, Soghra F, Abdolhossein M, et al. Ag/polyaniline nanocomposites: Synthesize, characterization, and application to the detection of dopamine and tyrosine [J]. Appl. Polym. Sci., 2013, 130(4): 2780
[22] Xiong Y J, Chen J Y, Wiley B, et al. Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions [J]. Nano. Lett., 2005, 5(10): 2058
[23] Islam R U, Witcomb M J, Scurrell M S, et al. In situ synthesis of a Pd-poly (1,8-diaminonaphthalene) nanocomposite: An efficient catalyst for Heck reactions under phosphine-free conditions [J]. Organomet.Chem., 2011, 12(2): 2206
[24] Zhang Q L, Feng J X, Wang A J, et al. Caffeine-assisted facile synthesis of platinum@palladium core-shell nanoparticles supported on reduced graphene oxide with enhanced electrocatalytic activity for methanol oxidation [J]. RSC. Adv., 2014, 4(95): 52640
[25] Wang H H. Caffeine-assisted facile synthesis of platinum@palladium core-shell nanoparticles supported on reduced graphene oxide with enhanced electrocatalytic activity for methanol oxidation [D]. Tianjin:Tianjin University, 2016
[25] (王慧慧. 贵金属钯纳米材料的制备及其电化学性能研究 [D]. 天津: 天津大学, 2016)
[26] Zhan Y C, Zhan L, Tian J N, et al. Enhanced electrocatalytic oxidation of methanol on Pd/polypyrrole-graphene in alkaline medium [J]. Electrochim. Acta., 2011, 56(5): 1967
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!