Please wait a minute...
Chinese Journal of Materials Research  2020, Vol. 34 Issue (7): 495-504    DOI: 10.11901/1005.3093.2019.477
ARTICLES Current Issue | Archive | Adv Search |
Effect of Artificial Aging on Microstructure and Mechanical Properties of Friction Stir Welded Joint of 7003/7046 Al-alloys
YANG Meng1,2, LI Chengbo1,2,3, LIU Shengdan1,4(), YE Lingying1,2, TANG Jianguo1,2, LIAO Zexin1,2
1.School of Materials Science and Engineering, Central South University, Changsha 410083, China
2.Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3.Guangdong Hoshion Industrial Aluminium Co. Ltd. , Zhongshan 528463, China
4.National Key Laboratory of Science and Technology for National Defence on High Strength Structural Materials, Central South University, Changsha 410083, China
Cite this article: 

YANG Meng, LI Chengbo, LIU Shengdan, YE Lingying, TANG Jianguo, LIAO Zexin. Effect of Artificial Aging on Microstructure and Mechanical Properties of Friction Stir Welded Joint of 7003/7046 Al-alloys. Chinese Journal of Materials Research, 2020, 34(7): 495-504.

Download:  HTML  PDF(17230KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of post-weld artificial aging on microstructure and mechanical properties of friction stir welded (FSW) joint of 7003-7046 dissimilar Al-alloys was investigated by means of differential scanning calorimetry, hardness test, room temperature tensile test, backscattered electron diffraction and transmission electron microscopy. The results show that the hardness is significantly higher on the retreating side (7046 Al-alloy side) than that of the advancing side (7003 Al-alloy side), and the average hardness difference between the two sides is about 30HV; After artificial aging, the hardness increases, the yield strength increases significantly, the tensile strength increases slightly, and the elongation has little change of the joint, while the hardness difference increases to about 50HV for the two sides. The reason has been discussed based on the microstructure of different regions of the FSW joint before and after artificial aging treatment.

Key words:  Al alloy      friction stir welding      post weld heat treatment      microstructure      mechanical property     
Received:  15 October 2019     
ZTFLH:  TG146  
Fund: National Key Research and Development Program of China(2016YFB0300901);Key Project of Science and Technology of Zhongshan Bureau of Guangdong Province(2016A1001)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.477     OR     https://www.cjmr.org/EN/Y2020/V34/I7/495

AlloyZnMgCuMnCrZrTiSiFeAl
70035.560.620.270.120.190.120.020.050.12Bal.
70466.441.400.27< 0.01< 0.010.150.020.070.11Bal.
Table 1  Chemical compotent of 7003 and 7046 Al alloys (mass fraction, %)
Fig.1  Schematic of hardness tests and tensile specimens prepared from the FSW joint (ND: normal direction of the base alloy, ED: extrusion direction of the base alloy, TD: transverse direction of the base alloy)
Fig.2  Macrostructure appearance of 7003-7046 dissimilar aluminum alloy FSW joint
Fig.3  Grain orientation maps in ND -TD section of BM zones (a) position g in Fig.2, (b) position h in Fig.2
Fig.4  Grain orientation maps in ND-TD section of NZ、HAZ and TMAZ zones in AW joint (a) position a in Fig.2, (b) position b in Fig.2, (c) position c in Fig.2, (d) position d in Fig.2, (e) position e in Fig.2, (f) position f in Fig.2
Fig.5  TEM images and corresponding SADP of NZ zones (a) NZ of AW joint-7003, (b) NZ of AA joint-7003, (c) NZ of AW joint-7046, (d) NZ of AA joint-7046
Fig.6  TEM images and the typical SADP of different zones on AS AW joint: (a) TMAZ, (b) HAZ, (c) BM, (d) SADP of BM, AA joint: (e) TMAZ, (f) HAZ, (g) BM, (h) SADP of BM
Fig.7  TEM images and the typical SADP of different zones on RS AW joint: (a) TMAZ, (b) HAZ, (c) BM, (d) SADP of BM, AA joint: (e) TMAZ, (f) HAZ, (g) BM, (h) SADP of BM
Fig.8  DSC curves of AS zones before and after artificial aging (a) AW joint, (b) AA joint
ZonesNatural agingArtificial aging
Area of peak I/J·g-1Area of peak II/J·g-1
AS (7003)RS (7046)AS (7003)RS (7046)
BM12.20±1.4715.82±1.5111.38±2.4414.70±1.87
HAZ9.92±1.5713.51±3.139.14±2.0412.03±0.54
TMAZ10.84±1.7315.79±3.489.72±2.1214.56±0.12
NZ11.71±1.7916.95±2.498.67±1.2815.33±0.95
Table 2  Precipition phase peak area of all zones before and after artificial aging
Fig.9  DSC curves of RS zones before and after artificial aging (a) AW joint, (b) AA joint
Fig.10  Micro-hardness profiles of the AW joint and AA joint
Materials conditionsTensile strength/MPaYield strength/MPaElongation/%
Natural aging7003-BM300.3±3.2179.2±3.523.2±2.3
7046-BM406.2±2.7289.5±1.817.8±1.7
7003-7046-joint324.5±1.8203.4±2.713.0±1.2
Artificial aging7003-BM331.4±3.6290.1±3.216.7±1.6
7046-BM505.7±1.4465.3±2.311.8±2.4
7003-7046-joint332.4±4.2264.6±1.612.8±3.6
Table 3  Tensile property of BM and FSW joints before or after artificial aging at room temperature
[1] Feng A H, Chen D L, Ma Z Y. Microstructure and cyclic deformation behavior of a friction-stir-welded 7075 Al alloy [J]. Metall. Mater. Trans., 2010, 41A: 957
[2] Sullivan A, Robson J D. Microstructural properties of friction stir welded and post-weld heat-treated 7449 aluminium alloy thick plate [J]. Mater. Sci. Eng., 2008, 478A: 351
[3] Wu Y L, Zheng Y, Liu S D, et al. Microstructure and mechanical properties of 7055 Al alloy sheet friction stir welded joint [J]. Journal of Central South University (Natural Science edition), 2015, 46: 2426
(吴豫陇, 郑英, 刘胜胆等. 7055铝合金板材搅拌摩擦焊接头的组织与力学性能 [J]. 中南大学学报(自然科学版), 2015, 46: 2426)
[4] Jata K V. Friction stir welding of high strength aluminum alloys [J]. Mater. Sci. Forum., 2000, 331-337: 1701
doi: 10.4028/www.scientific.net/MSF.331-337
[5] Wang K S, Zhang X L, Wang X H, et al. Comparison of fatigue properties between friction stir welds and TIG welds for Al alloy [J]. Chinese Journal of Materials Research, 2009, 23: 73
(王快社, 张小龙, 王训宏等. 搅拌摩擦与氩弧焊铝合金接头疲劳性能的比较 [J]. 材料研究学报, 2009, 23: 73)
[6] Kalemba-Rec I, Kopyściański M, Miara D, et al. Effect of process parameters on mechanical properties of friction stir welded dissimilar 7075-T651 and 5083-H111 aluminum alloys [J]. Int. J. Adv. Manuf. Technol., 2018, 97: 2767
doi: 10.1007/s00170-018-2147-y
[7] Wang H L, Zeng X H, Zhang X M, et al. Microstructure and mechanical property of friction stir weld joints of dissimilar Al-alloys 5083 and 6061 [J]. Chinese Journal of Materials Research, 2018, 32: 473
doi: 10.11901/1005.3093.2017.634
(王洪亮, 曾祥浩, 张欣盟等. 5083和6061铝合金异种搅拌摩擦焊接接头的组织和性能 [J]. 材料研究学报, 2018, 32: 473)
doi: 10.11901/1005.3093.2017.634
[8] Padhy G K, Wu C S, Gao S. Friction stir based welding and processing technologies-processes, parameters, microstructures and applications: A review [J]. J. Mater. Sci. Technol., 2018, 34: 1
[9] Sharma C, Dwivedi D K, Kumar P. Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al-Zn-Mg alloy AA7039 [J]. Mater. Des., 2013, 43: 134
doi: 10.1016/j.matdes.2012.06.018
[10] Hamed J A. Effect of welding heat input and post-weld aging time on microstructure and mechanical properties in dissimilar friction stir welded AA7075-AA5086 [J]. Trans. Nonferrous Met. Soc. China, 2017, 27: 1707
doi: 10.1016/S1003-6326(17)60193-6
[11] Safarbali B, Shamanian M, Eslami A. Effect of post-weld heat treatment on joint properties of dissimilar friction stir welded 2024-T4 and 7075-T6 aluminum alloys [J]. Trans. Nonferrous Met. Soc. China, 2018, 28: 1287
doi: 10.1016/S1003-6326(18)64766-1
[12] Lin H Q, Wu Y L, Liu S D. Impact of initial temper of base metal on microstructure and mechanical properties of friction stir welded AA 7055 alloy [J]. Mater. Charact., 2018, 146: 159
doi: 10.1016/j.matchar.2018.09.043
[13] Wang X J, Sun G P, Zhang J, et al. Effects of heat treatment after welding on friction stir welding joints of high-strength aluminum alloy [J]. Chinese Journal of Non-ferrous Metals, 2009, 19: 484
(王希靖, 孙桂苹, 张杰等. 焊后热处理对高强铝合金搅拌摩擦焊接头的影响 [J]. 中国有色金属学报, 2009, 19: 484)
[14] Sivaraj P, Kanagarajan D, Balasubramanian V. Effect of post weld heat treatment on tensile properties and microstructure characteristics of friction stir welded armour grade AA7075-T651 aluminium alloy [J]. Def. Technol., 2014, 10: 1
[15] Zhang H J, Luo S H, Xu W. Influence of welding speed on zigzag line feature and tensile property of a friction-stir-welded Al-Zn-Mg aluminum alloy [J]. J. Mater. Eng. Perform., 2019, 28: 1790
doi: 10.1007/s11665-019-03888-5
[16] Su J Q, Nelson T W, Mishra R, et al. Microstructural investigation of friction stir welded 7050-T651 aluminium [J]. Acta Mater., 2003, 51: 713
doi: 10.1016/S1359-6454(02)00449-4
[17] Kamp N, Reynolds A P, Robson J D. Modelling of 7050 aluminium alloy friction stir welding [J]. Sci. Technol. Weld. Join., 2013, 14: 589
[18] Li G H, Zhou L, Luo S F, et al. Effect of self-reacting friction stir welding on microstructure and mechanical properties of Mg-Al-Zn alloy joints [J]. J. Manuf. Process., 2019, 37: 1
doi: 10.1016/j.jmapro.2018.11.003
[19] Karaaslan A, Kaya I, Atapek H. Effect of aging temperature and of retrogression treatment time on the microstructure and mechanical properties of alloy AA 7075 [J]. Met. Sci. Heat. Treat., 2007, 49: 443
doi: 10.1007/s11041-007-0083-9
[20] Tang J G, Chen H, Zhang X M, et al. Influence of quench-induced precipitation on aging behavior of Al-Zn-Mg-Cu alloy [J]. Trans. Nonferr. Met. Soc., 2012, 22: 1255
doi: 10.1016/S1003-6326(11)61313-7
[21] Peng X Y, Li Y, Liang X P, et al. Precipitate behavior and mechanical properties of enhanced solution treated Al-Zn-Mg-Cu alloy during non-isothermal ageing [J]. J. Alloys Compd., 2018, 735: 964
doi: 10.1016/j.jallcom.2017.11.178
[22] Jiang J T, Tang Q J, Yang L, et al. Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties [J]. J. Mater. Process. Technol., 2016, 227: 110
doi: 10.1016/j.jmatprotec.2015.07.018
[23] Liu S D, Li C B, Han S Q, et al. Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy [J]. J. Alloys Compd., 2015, 625: 34
doi: 10.1016/j.jallcom.2014.10.195
[24] Xu X S, Zheng J X, Li Z, et al. Precipitation in an Al-Zn-Mg-Cu alloy during isothermal aging: atomic-scale HAADF-STEM investigation [J]. Mate. Sci. Eng., 2017, 691: 60
[25] Yang W C, Ji S X, Zhang Q, et al. Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of ƞ' precipitate [J]. Mater. Des., 2015, 85: 752
doi: 10.1016/j.matdes.2015.06.183
[26] Srivatsan T S, Sriram S, Veeraraghavan D, et al. Microstructure, tensile deformation and fracture behaviour of aluminium alloy 7055 [J]. J. Mater. Sci., 1997, 32: 2883
doi: 10.1023/A:1018676501368
[27] Zhao Z K, Sun Q Z, Zhang P Q, et al. Effect of zinc content on the ageing behavior of Al-Zn-Mg-Cu-Li alloys [J]. Mater. Sci. Forum., 2008, 575-578: 1093
doi: 10.4028/www.scientific.net/MSF.575-578
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] LI Qiao, NIU Ben, ZHANG Ruiqian, LIU Huiqun, LIN Guoqiang, WANG Qing. Effect of Ta/Zr on High-temperature Microstructural Stability of Warm-rolled Sheets of Fe-Cr-Al-Mo-Nb Alloy[J]. 材料研究学报, 2023, 37(6): 423-431.
[10] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[12] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[13] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[14] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[15] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
No Suggested Reading articles found!