Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (9): 641-649    DOI: 10.11901/1005.3093.2018.707
ARTICLES Current Issue | Archive | Adv Search |
Relationship Between Mechanical Behavior and Microstructure for an Ultra-high Strength Maraging Steel
FENG Jiawei1,2,NIU Mengchao1,2,WANG Wei1(),SHAN Yiyin1,YANG Ke1
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
Cite this article: 

FENG Jiawei,NIU Mengchao,WANG Wei,SHAN Yiyin,YANG Ke. Relationship Between Mechanical Behavior and Microstructure for an Ultra-high Strength Maraging Steel. Chinese Journal of Materials Research, 2019, 33(9): 641-649.

Download:  HTML  PDF(17102KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Precipitate evolution during aging process as well as its effect on mechanical properties of a 2.4 GPa grade ultra-high strength maraging steel was investigated by means of high resolution transmission electron microscope (HRTEM) and atom probe tomography (APT). It was found that at the initial stage of aging Ni and Ti atoms segregated rapidly and Ni-Ti clusters formed in the matrix. At the peak-aging time the Ni-Ti clusters transformed into Ni3Ti, and the Mo-rich phase appeared at the Ni3Ti/matrix interface. With extension of the aging time Ni3Ti phase started to coarsen and the Mo-rich phase transformed into Ni3Mo. Mechanical property tests show that the ultimate tensile strength increased firstly and then started to decrease after peak-aging time. A mutually exclusive relation between the ultimate tensile strength and fracture toughness was found, especially, when the aging time was 4 h the ultimate tensile strength reached to the maximum value of 2560 MPa, however the fracture toughness decreased down to the minimum value of 20 MPa·m1/2. Finally, the effect of the morphology of the precipitates on both the strength and fracture toughness is discussed based on the results of the precipitates evolution during aging process.

Key words:  matallic materials      maraging steel      microstructure      mechanical property     
Received:  13 December 2018     
ZTFLH:  TG142.41  
Fund: National Natural Science Foundation of China(51201160);National Natural Science Foundation of China Research Fund for International Young Scientists(51750110515);Youth Innovation Promotion Association of Chinese Academy of Sciences(2017233)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.707     OR     https://www.cjmr.org/EN/Y2019/V33/I9/641

ClusterNi-TiMo-rich
dmax0.400.45
Nmin2020
Table 1  Parameters applied in the maximum separation analysis
Fig.1  TEM image (a) and [001]M diffraction pattern (b) of cryogenically treated experimental maraging steel
Fig.2  Ni (a), Ti (b), Co (c) and Mo (d) atoms mapping and corresponding nearest neighbor analysis results in the analytical body (20 nm×20 nm×50 nm) after cryogenic treatment
Fig.3  Ni (a), Ti (b), Mo (c), Ni+Ti+Mo (d) atoms mapping in an analytical body (30 nm×30 nm×60 nm) and isoconcentration surface for regions containing more than 35%Ni+Ti+10%Mo+Fe (e) for the sample aged at 480℃ for 10 min
Fig.4  Ni (a), Ti (b), Mo (c) and Ni+Ti+Mo (d) atoms mapping inan analytical body (30 nm×30 nm×60 nm) and isoconcentration surface for regions containing more than (e) 35%Ni+Ti+10%Mo+Fe for the sample aged at 480℃ for 4 h
Fig.5  3-D atoms mapping (a) in Fig.4e and corresponding 1-D concentration profile (b) of the selected region (6 nm×6 nm×18 nm)
Fig.6  Ni (a), Ti (b), Mo (c) and Ni+Ti+Mo (d) atoms mapping in the analytical body (30 nm×30 nm×60 nm) and isoconcentration surface for regions containing more than (e) 35%Ni+Ti+10%Mo+Fe for the sample aged at 480℃ for 48 h
Fig.7  High-resolution images of Ni3Ti (a) and Ni3Mo(c), and their corresponding FFT of Ni3Ti (b) and Ni3Mo (d) in the sample aged at 480℃ for 96 h
Fig.8  Tensile properties and fracture toughness of experimental maraging steel under different heat treatment conditions
Fig.9  XRD analysis results of theexperimental maraging steel aged at 480℃ for different times (a) XRD patterns of matrix; (b) function of volume fraction of reverted austenite with aging time
Fig.10  Schematic of evolution of precipitations in 2.4 GPa grade maraging steel during aging at 480℃
1 BieberC.G. Progress with 25% nickel steel for high-strength application [J]. Metal Progress, 1960, 78(5): 763
2 HamakerJ C, BayerA M. Applications of maraging steels [J]. Cobalt, 1968, 3: 3
3 DeckerR F, GoldmanA J, EashJ T. Age-hardenable, martensitic iron-base alloys [P]. U.S. Pat, 3093519, 1963, 6
4 ShaW, GuoZ. Maraging steels: Modeling of microstructure, properties and applications [J]. Nephrology, 2009, 18(11): 724
5 DeckerR F, FloreenS. Maraging Steels: Recent Developments and Applications: Proceedings of a Symposium [M]. The Minerals, Metal & Materials Society, Huntington, 1988, 1: 38
6 TianJ L, WangW, YinL C, et al. Three dimensional atom probe and first-principles studies on spinodal decomposition of Cr in a Co-alloyed maraging stainless steel [J]. Scripta Mater., 2016, 121:37
7 LiY C, YanW, CottonJ D, et al. A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species [J]. Mater. Design., 2015, 82:56
8 JiangY, YinZ D, ZhuJ C, LiM W. Quantitative analysis on effect of alloying elements on Ms temperature of maraging stainless steel [J]. Special steel, 2003, 24(6): 9
8 姜 越, 尹钟大, 朱景川等. 合金元素对马氏体时效不锈钢Ms温度影响的定量分析 [J]. 特殊钢, 2003, 24(6): 9)
9 JiangY, YinZ D, ZhuJ C, et al. Development of ultra-high strength maraging steel [J]. Special steel, 2004, 25(2): 1
9 姜 越, 尹钟大, 朱景川等. 超高强度马氏体时效钢的发展 [J]. 特殊钢, 2004, 25(2): 1)
10 YangZ Y, LiuZ B, LiangJ X, et al. Development of maraging stainless steel [J]. Transactions of Materials and Heat Treatment, 2008, 29(4): 1
10 杨志勇, 刘振宝, 梁剑雄等. 马氏体时效不锈钢的发展 [J]. 材料热处理学报, 2008, 29 (4): 1)
11 YangW. Macroscopic Microscopic Fracture Mechanics [M]. National Defense Industry Press, 1995
11 杨 卫. 宏微观断裂力学 [M]. 国防工业出版社, 1995
12 AndersonT L. Fracture mechanics-Fundamentals and applications [M]. CRC Press, 2015
13 JiaoZ B, LiuJ C. Research and development of advanced nano-precipitate strengthened ultra-high strength steels [J]. Materials China, 2011, 30(12): 6
13 焦增宝, 刘锦川, 新型纳米强化超高强度钢的研究与进展 [J]. 中国材料进展, 2011, 30(12): 6
14 HeY, YangK, QuW S, et al. Strengthening and toughing of a 2800 MPa grade maraging steel [J]. Mater. Lett., 2002, 56: 763
15 MillerM K, KenikE A. Atom probe tomography: a technique for nanoscale characterization [J]. Microsc. Microanal., 2004, 10 (3): 336
16 OlofC. Hellman, John Blatz du Rivage, David N. Seidmanet al. Efficient sampling for three-dimensional atom probe microscopy data [J]. Ultramicroscopy, 2003, 95: 199
17 YoonK E, NoebeR D, HellmanO C, et al. Dependence of interfacial excess on the threshold value of the isoconcentration surface [J]. Surf. Interface. Anal., 2004, 36(5-6): 594
18 PingaD H, OhnumaaM, HirakawabY, et al. Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel [J]. Mater. Sci. Eng., A, 2005, 394(1-2): 285
19 AnderssonM, StillerK, H?ttestrandM. Comparison of early stages of precipitation in Mo-rich and Mo-poor maraging stainless steels [J]. Surf. Interface. Anal., 2007, 39(2-3): 195
20 GeroldV, HaberkornH. On the critical resolved shear stress of solid solutions containing coherent precipitates [J]. physica status solidi (b), 1966, 16(2): 675
21 PerelomaE V, ShekhterA, MillerM K, et al. Ageing behaviour of an Fe-20Ni-1.8Mn-1.6Ti-0.59Al (wt%) maraging alloy: clustering, precipitation and hardening [J]. Acta materialia, 2004, 52(19): 5589
22 KrafftJ M. Correlation of plane strain crack toughness with strain hardening characteristics of a low, a medium, and a high strength steel [J]. Appl. Mater. Res, 1964, 3: 88
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[8] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[9] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[11] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[12] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[13] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] DONG Yu'ang, YANG Huajie, BEN Dandan, MA Yunrui, ZHOU Xianghai, WANG Bin, ZHANG Peng, ZHANG Zhefeng. Excellent Cryogenic Tensile Properties of Ultra-fine Grained 316L Stainless Steel after Electropulsing Treatment in Liquid Nitrogen[J]. 材料研究学报, 2023, 37(3): 168-174.
[15] ZHAO Yunmei, ZHAO Hongze, WU Jie, TIAN Xiaosheng, XU Lei. Effect of Heat Treatment on Microstructure and Properties of TIG Welded Joints of Powder Metallurgy Inconel 718 Alloy[J]. 材料研究学报, 2023, 37(3): 184-192.
No Suggested Reading articles found!