Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (8): 588-596    DOI: 10.11901/1005.3093.2018.693
ARTICLES Current Issue | Archive | Adv Search |
Microstructure and Mechanical Properties of as Cast and Heat-treated Al-Si-Cu-Ni-Ce-Cr
Tianyou ZHAO,Erjun GUO,Yicheng FENG(),Sicong ZHAO,Yuanke FU,Liping WANG
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
Cite this article: 

Tianyou ZHAO, Erjun GUO, Yicheng FENG, Sicong ZHAO, Yuanke FU, Liping WANG. Microstructure and Mechanical Properties of as Cast and Heat-treated Al-Si-Cu-Ni-Ce-Cr. Chinese Journal of Materials Research, 2019, 33(8): 588-596.

Download:  HTML  PDF(30248KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructure and mechanical properties of Al-Si-Cu-Ni-Ce-Cr alloy after different heat treatment were investigated by optical microscope, scanning electron microscope, X-ray diffraction and universal tensile testing. Results show that the θ-Al2Cu phase completely dissolved into the matrix and the γ-Al7Cu4Ni and most of the δ-Al3CuNi phases dissolved into the matrix after two steps solution treatment. When the Al-Si-Cu-Ni-Ce-Cr alloy was treated by 490°C×2 h+520°C×2 h+185°C× 6 h, the ultimate tensile strength at room temperature and 300°C is 336.8 MPa and 153.3 MPa, respectively. Compare with the as-cast Al-Si-Cu-Ni-Ce-Cr alloy, the value of tensile strength at room temperature and 300°C increases 74% and 19.3%, respectively.

Key words:  metallic material      microstructure      mechanical property      heat-resistant aluminum      solid solution treatment      ageing treatment     
Received:  06 December 2018     
ZTFLH:  TG146.2  
Fund: Supported by Foundation:Natural Science Foundation of Heilongjiang Province of China(Nos. ZD2016011);Supported by Foundation:Natural Science Foundation of Heilongjiang Province of China(Nos. E2018045)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.693     OR     https://www.cjmr.org/EN/Y2019/V33/I8/588

ElementSiCuNiCrCeAl
Content126.01.30.50.5Bal.
Table 1  Nominal chemical composition of Al-Si-Cu-Ni-Ce-Cr alloy (%, mass fraction)
Fig.1  Schematic diagram of tensile sample (unit: mm)
Fig.2  Optical microstructure of alloy in different states (a) as cast, (b) 490℃×4 h, (c) 490℃×2 h+520℃×2 h, (d) 490℃×4 h +185℃×6 h, (e) 490℃×2 h+520℃×2 h+185℃×6 h
PointAlSiCuNiCeCr
A72.870.6413.9412.500.010.04
B68.426.0114.9510.520.040.05
C2.1597.400.450.000.000.00
D67.640.1117.0415.170.010.03
E42.1157.550.340.000.000.00
F77.300.6812.109.830.000.08
Table 2  Energy spectrum analysis of marked area in Fig.3 and Fig.4 (%, atomic fraction)
Fig.3  SEM images of as-cast alloy
Fig.4  XRD analysis of alloys in different states (a) as-cast, (b) 490℃×4 h, (c) 490℃×2 h+520℃×2 h, (d) 490℃×4 h+185℃×6 h, (e) 490℃×2 h+520℃×2 h+185℃×6 h
Fig.5  SEM images of alloy treated by solid solution (a) and (b) 490℃×4 h, (c) and (d) 490℃×2 h+520℃×2 h
Fig.6  SEM images of alloy treated by aging (a) and (b) 490℃×4 h+185℃×6 h, (c) and (d) 490℃×2 h+520℃×2 h+185℃×6 h
Fig.7  Ce distribution in as-cast alloy (a) SEM image in as-cast alloy,(b) Ce distribution
Fig.8  Ce distribution in sample after solution treatment (a) SEM image at solution treatment、(b) The Ce distribution
Fig.9  Ce distribution in sample after aging treatment (a) SEM image at aging treatment、(b) Ce distribution
Fig.10  The tensile strength of alloy at room temperature and high temperature in different states
Fig.11  Tensile fracture morphology of sample tested at room temperature (a) as-cast, (b) 490℃×4 h+185℃×6 h, (c) 490℃×2 h+520℃×2 h+185℃×6 h
Fig.12  Tensile fracture morphology of alloy tested at high temperature (a) as-cast, (b) 490℃×4 h+185℃×6 h, (c) 490℃×2 h+520℃×2 h+185℃×6 h
[1] Jia X L, Zhu X R, Chen D H, et al. Research development of heat-resistant aluminium alloys [J]. Ordn. Mater. Sci. Eng., 2010, 32(2): 108
[1] 贾祥磊, 朱秀荣, 陈大辉等. 耐热铝合金研究进展 [J]. 兵器材料科学与工程, 2010, 32(2): 108)
[2] Shaji M C, Ravikumar K K, Ravi M, et al. Development of a high strength cast aluminium alloy for possible automotive applications [J]. Materials Science Forum, 2013, 765: 54
[3] Sun D Q, Chen H J, Wen Q C, et al. Development and application of heat-resistant Al alloy [J]. Nonferrous. Metal. Sci. Eng, 2018, 9(03): 65
[3] 孙德勤, 陈慧君, 文青草等. 耐热铝合金的发展与应用 [J]. 有色金属科学与工程, 2018, 9(03): 65
[4] Du Z Z, Rui X, Wang Q, et al. Research progress on surface modification of aluminum alloy automotive engine cylinder inner wall [J]. Mater. Rev., 2018, 32(S1): 336
[4] 杜忠泽, 芮 星, 王 强等. 铝合金汽车发动机缸体内壁表面改性的研究进展 [J]. 材料导报, 2018, 32(S1): 336
[5] Hirsch J. Aluminium in innovative light-weight car design [J]. Mater. Trans, 2011, 52(5): 818
[6] Yu F, Xu D F, Chen S Y, et al. Effect of Cu content on anisotropy of mechanical property of Al-Cu-Mn alloy [J]. Chin. J. Mater. Res, 2018, 32(11): 853
[6] 余 芳, 徐道芬, 陈送义等. Cu含量对Al-Cu-Mn合金力学性能各向异性的影响 [J]. 材料研究学报, 2018, 32(11): 853
[7] Wu S, Gong C Y, Lin Z F, et al. Heat treatment of Al-Si-Cu cast aluminum alloy [J]. Heat. Treat. Metals, 2017, 42(9): 57
[7] 吴 双, 龚成云, 林兆富等. Al-Si-Cu系铸造铝合金的热处理 [J]. 金属热处理, 2017, 42(9): 57)
[8] Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry [J]. Mater. Sci. Eng. A, 2000, 280(1): 37
[9] Nayak M S. Synthesis of Al-Si alloys and study of their mechanical properties [J]. J. Mater. Eng. Perform, 2015, 24(3): 1165
[10] Manasijevic S, Radisa R, Markovic S, et al. Thermal analysis and microscopic characterization of the piston alloy AlSi13Cu4Ni2Mg [J]. Intermetallics, 2011, 19(4): 486
[11] Qi G H, Liu X F, Meng Q G, et al. Relationships between mechanical properties and microstructures of binary Al-Si alloys [J]. Chin. J. Mater. Res., 2001, 15(6): 699
[11] 齐广慧, 刘相法, 孟庆格等. 二元Al-Si合金的力学性能与微结构的关系 [J]. 材料研究学报, 2001, 15(6): 699)
[12] Wang X F, Liu X F, Ding H M. Phases analysis of high properties Al-Si-Cu-Ni-Mg piston alloy [J]. Foundry, 2008, 57(2): 126
[12] 王宪芬, 刘相法, 丁海民. 高性能Al-Si-Cu-Ni-Mg活塞合金的相分析 [J]. 铸造, 2008, 57(2):126
[13] Li Y, Yang Y, Wu Y, et al. Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys [J]. Mater. Sci. Eng. A, 2010, 527(26): 7132
[14] Yang Y, Yu K, Li Y, et al. Evolution of nickel-rich phases in Al-Si-Cu-Ni-Mg piston alloys with different Cu additions [J]. Mater. Des, 2012, 33: 220
[15] Ibrahim A I, Elgallad E M, Samuel A M, et al. Effects of addition of transition metals on intermetallic precipitation in Al-2%Cu-1%Si-based alloys [J]. Int. J. Met, 2018, 12(3): 574
[16] Yang Y. Study on the evolution and collaborative strengthening mechanism of heat-resistant phases in multicomponent Al-Si alloy [D]. Jinan: Shandong University, 2013
[16] 杨 阳. Al-Si多元合金中耐热相演变行为与协同强化机制的研究 [D]. 济南:山东大学, 2013
[17] Hou L G, Cui H, Cai Y H, et al. Effect of (Mn+Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al–Si alloys [J]. Mater. Sci. Eng. A, 2009, 527(1-2): 85
[18] Li Y, Yang Y, Wu Y, et al. Supportive strengthening role of Cr-rich phase on Al-Si multicomponent piston alloy at elevated temperature [J]. Mater. Sci. Eng. A, 2011, 528(13): 4427
[19] Yang Y, Zhong S Y, Chen Z, et al. Effect of Cr content and heat-treatment on the high temperature strength of eutectic Al-Si alloys [J]. J. Alloy. Compd, 2015, 647: 63
[20] Qian Z, Liu X F, Feng Z J, et al. High-Temperature strengthening effect of trace RE on industrial Al-Si piston alloy and its microstructural analysis [J]. Foundry, 2007, 56(2): 141
[20] 钱 钊, 刘相法, 冯增建等. 微量混合RE对Al-Si多元活塞合金的高温强化及组织分析 [J]. 铸造, 2007, 56(2): 141
[21] Qiang H, Xu Z P. Effect of heat treatment on microstructure and mechanical properties of aluminum alloy for piston [J]. Hot. Working. Technol, 2018, 47(02): 242
[21] 强 华, 徐尊平. 热处理对活塞用铝合金微观组织及力学性能的影响 [J]. 热加工工艺, 2018, 47(02): 242
[22] Sokolowski J H, Sun X C, Byczynski G, et al. The removal of copper-phase segregation and the subsequent improvement in mechanical properties of cast 319 aluminium alloys by a two-stage solution heat treatment [J]. J. Mater. Process. Technol, 1995, 53(1-2): 385
[23] Sui Y D. Study on the Microstructure and high temperature properties of Al-Si-Cu-Ni-Mg casting heat- resistant aluminum alloy [D]. Shanghai: Shanghai Jiao Tong University, 2016
[23] 隋育栋. Al-Si-Cu-Ni-Mg系铸造耐热铝合金组织及其高温性能研究 [D]. 上海: 上海交通大学, 2016
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!