Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (6): 419-426    DOI: 10.11901/1005.3093.2018.571
ARTICLES Current Issue | Archive | Adv Search |
Effects of Vanadium on Microstructure and Mechanical Properties of a Wrought Nickel-based Superalloy
Shuo HUANG1(),Yuwei HE2,Guohua XU1,Ran DUAN1,2,Lei WANG2,Guangpu ZHAO1
1. Department of High-temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110006, China
Cite this article: 

Shuo HUANG,Yuwei HE,Guohua XU,Ran DUAN,Lei WANG,Guangpu ZHAO. Effects of Vanadium on Microstructure and Mechanical Properties of a Wrought Nickel-based Superalloy. Chinese Journal of Materials Research, 2019, 33(6): 419-426.

Download:  HTML  PDF(12646KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of vanadium (V) addition on the tensile- and stress rupture-property at room temperature and 750℃, and the microstructure evolution of GH4061 alloy, including grain size, carbide and γ′/γ'' phase etc. were investigated by means of tensile- and stress rupture-testing, OM, SEM, TEM and electrochemical extraction and phase analysis of precipitates. The results show that V addition can promote the precipitation of MC-type carbide and γ′/γ'' phase, and refine the grain size slightly. With the increase of V content, the lattice constant of γ matrix increases, the mismatch between γ matrix and γ′ phase decreases, and the coarsening of γ′/γ'' phase at 750℃ is restrained. The addition of V does not have significant influence on room temperature tensile property, but apparently benefits the tensile strength and rupture life at 750℃. Furthermore, the GH4061 alloy with 0.4% (mass fraction) V addition shows the best stress rupture property at 750℃.

Key words:  metallic materials      vanadium content      microstructure and mechanical property      GH4061 alloy      wrought superalloy     
Received:  21 September 2018     
ZTFLH:  TG146.1  
Fund: National Science and Technology Major Project(No. 2018ZX06901028)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.571     OR     https://www.cjmr.org/EN/Y2019/V33/I6/419

Fig.1  OM image of as hot-rolled bars of the GH4061 alloy
CCrNbMoAlTiFeCuVNi
0.0417.04.83.51.20.613.00.60.4Bal.
Table 1  Nominal composition of the GH4061 alloy (mass fraction, %)
Fig.2  Typical microstructures of asheat-treated bars of the GH4061 alloy: (a) V0, (b) V1, (c) V2 , (d) V3
Fig.3  Effects of V content on the grain size of the GH4061 alloy
Fig.4  Typical SEM morphology of the MC phase
Fig.5  Typical SEM morphology of γ? and γ" phases: (a) specimen V0 and (b) specimen V2
Fig.6  Typical TEM morphology of γ? and γ" phase of specimen V2: (a) bright field and (b) dark field
PhaseNo.

Phase

fraction/%, mass fraction

Element constituent/%, mass fraction
NiFeCuCrAlTiNbMoVC
γV0Bal.45.2414.040.4516.860.360.161.853.78-0.003
V2Bal.44.6314.020.4216.890.330.161.803.840.400.001
γ?+γ"V017.1569.711.500.502.543.342.6018.451.19--
V217.3569.911.450.482.503.322.5218.101.180.38-
MCV00.068-----14.7066.181.47-13.24
V20.13-----13.0868.460.77-13.08
Table 2  Electrochemistry phase extraction analysis results of the specimen V0 and V2
Fig.7  Typical TEM high resolution morphology of specimen V2: (a) high resolution image and Fourier transform and (b) selected-area diffraction pattern
Fig.8  Effect of V content on the lattice constant and lattice mismatch of GH4061 alloy
Fig.9  Effects of V content on the mechanical properties of GH4061 alloy: (a) room temperature tensile, (b) 750℃ tensile and (c) 750℃/460 MPa rupture
Fig.10  γ? and γ" phase SEM morphology after aged at 750℃ for 180 min: (a) specimen V0 and (b) specimen V2
[1] Zha X Q, Hui W J, Yong Q L, et al. Effect of vanadium on the fatigue properties of microalloyed medium-carbon steel [J]. Acta Metall. Sin., 2007, 43: 719
[1] (查小琴, 惠卫军, 雍岐龙等. 钒对中碳非调质钢疲劳性能的影响 [J]. 金属学报, 2007, 43: 719)
[2] Liu Z D, Cheng S C, Bao H S, et al. Effect of vanadium on structure and properties of ferrite heat resistant steel T122 [J]. Special Steel, 2006, 27(1): 7
[2] (刘正东, 程世长, 包汉生等. 钒对T122铁素体耐热钢组织和性能的影响 [J]. 特殊钢, 2006, 27(1): 7)
[3] Wei S Z, Zhu J H, Xu L J, et al. Effects of carbon on formation of carbides in high vanadium high-speed steel [J]. Foundry Technol., 2005, 26: 169
[3] (魏世忠, 朱金华, 徐流杰等. 碳对高钒高速钢碳化物形成的影响 [J]. 铸造技术, 2005, 26: 169)
[4] Zhang C, Liu J R, Huang W D. Effect of trace vanadium on microstructure of AZ91D magnesium alloy [J]. Rare Metal Mater. Eng., 2011, 40: 1173
[4] (张 超, 刘建睿, 黄卫东. 微量钒对AZ91D镁合金显微组织的影响 [J]. 稀有金属材料与工程, 2011, 40: 1173)
[5] Hu K J. Application status of vanadium abroad and development suggestion of vanadium products of Pan Steel [J]. Iron Steel Vanad. Titan., 2000, 21(1): 64
[5] (胡克俊. 国外钒的应用现状及攀钢钒产品的开发建议 [J]. 钢铁钒钛, 2000, 21(1): 64)
[6] Jena A K, Chaturvedi M C. The role of alloying elements in the design of nickel-base superalloys [J]. J. Mater. Sci., 1984, 19: 3121
[7] Panahi M H, Pirali H. Experimental study of high temperature fracture behavior of A286 superalloy at 650℃ [J]. Phys. Mesomechan., 2018, 21: 157
[8] Huang F X. Development of turbine disk superalloys in Russia [J]. J. Aeronaut. Mater., 1993, 13(3): 49
[8] (黄福祥. 涡轮盘用变形高温合金在俄国的发展 [J]. 航空材料学报, 1993, 13(3): 49)
[9] Du J H, Zhao G P, Deng Q, et al. Development of wrought superalloy in China [J] J. Aeronaut. Mater., 2016, 36(3): 27
[9] (杜金辉, 赵光普, 邓 群等. 中国变形高温合金研制进展 [J]. 航空材料学报, 2016, 36(3): 27)
[10] Nedashkovskii K I, Zheleznyak O N, Gromyko B M, et al. Effect of low temperatures on mechanical and physical properties of high-strength nickel alloy éK61-ID and stainless maraging steel éK49-VD [J]. Met. Sci. Heat Treat., 2003, 45: 233
[11] Kennedy R L, Cao W D. New development in wrought in 718-type [J]. Acta Metall., 2005, 18: 39
[12] Semenov V N, Akimov N V, Glushko V P. Formation of cracks in EP202 and EK61 alloys in welding of structures of liquid rocket engines [J]. Weld. Int., 2013, 27: 159
[13] Xie X S, Dong J X, Fu S H, et al. Research and development of γ" and γ? strengthened Ni-Fe base superalloy GH4169 [J]. Acta Metall. Sin., 2010, 46: 1289
[13] (谢锡善, 董建新, 付书红等. γ"γ?相强化的Ni-Fe基高温合金GH4169的研究与发展 [J]. 金属学报, 2010, 46: 1289)
[14] Rong Y H, Chen S P, Hu G X, et al. Prediction and characterization of variant electron diffraction patterns for γ" and δ, precipitates in an INCONEL 718 alloy [J]. Metall. Mater. Trans., 1999, 30A: 2297
[15] Collier J P, Song H W, Tien J K, et al. The effect of varying Al, Ti and Nb content on the phase stability of INCONEL 718 [J]. Metall. Trans., 1988, 19A: 1657
[16] Yong Q L, Liu Z D, Sun X J, et al. Theoretical calculation for equilibrium solubility and compositional coefficient of V(C, N) in V-bearing microalloyed steel [J]. Iron Steel Vanad. Titan., 2005, 26(2): 20
[16] (雍岐龙, 刘正东, 孙新军等. 钒微合金钢中碳氮化钒固溶量及化学组成的计算与分析 [J]. 钢铁钒钛, 2005, 26(2): 20)
[17] Chen J, Wang J Z, Yan F Y, et al. Corrosion wear synergistic behavior of Hastelloy C276 alloy in artificial seawater [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 661
[18] Donachie M J, Donachie S J. Superalloys: A Technical Guide [M]. 2nd ed. Materials Park, OH: ASM International, 2002
[19] Murata Y, Suga K, Yukawa N. Effect of transition elements on the properties of MC carbides in IN-100 nickel-based superalloy [J]. J. Mater. Sci., 1986, 21: 3653
[20] Chaturvedi M C, Jena A K. The effect of vanadium additions on the precipitation behaviour of Ni-Co-Cr-Nb alloys [J]. J. Mater. Sci., 1985, 20: 1713
[21] Guo S R, Lu D Z, Fan H M. Role of B and C in a Ni-Fe-Cr base superalloy [J]. Acta Metall. Sin., 1988, 24: 206
[21] (郭守仁, 卢德忠, 范鹤鸣. 硼和碳在一种Ni-Fe-Cr基高温合金中的作用 [J]. 金属学报, 1988, 24: 206)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!