Please wait a minute...
腐蚀科学与防护技术  2018, Vol. 30 Issue (2): 127-134    DOI: 10.11903/1002.6495.2017.114
  研究报告 本期目录 | 过刊浏览 |
腐蚀性硫浓度对“晶界工程”优化铜绕组抗油硫腐蚀性能的影响
许云洁1, 袁媛1(), 周江1, 何潇2, 廖瑞金3
1 重庆大学材料科学与工程学院 重庆 400044
2 云南电网有限责任公司电力科学研究院 昆明 650200
3 重庆大学 输配电装备及系统安全与新技术国家重点实验室 重庆 400044
Concentration Dependence of Corrosive Sulfur Induced Corrosion of GBE Copper-windings
Yunjie XU1, Yuan YUAN1(), Jiang ZHOU1, Xiao HE2, Ruijin LIAO3
1 College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2 Electric Power Research Institute, Yunnan Power Grid Co., LTD, Kunming 650200, China
3 State Key Laboratory of Transmission & Distribution Equipment and Power System Safety and New Technology, Chongqing University, Chongqing 400044, China;
全文: PDF(5532 KB)   HTML
摘要: 

为了缓解油浸式电力设备中广泛存在的油硫腐蚀问题,本文采用“晶界工程 (GBE)”技术优化铜绕组,对其进行了不同腐蚀性硫浓度的腐蚀实验,通过对铜绕组和绝缘油中腐蚀产物的生成,以及微观分析,研究了“GBE”铜绕组的抗腐蚀性能,以及其对绝缘油特性的影响。结果表明:由于“GBE”铜绕组特殊晶界比例的增加抑制了腐蚀坑的产生和合并,其具有优良的抗油硫腐蚀性能,即使在腐蚀性硫浓度达到2000 mg/kg时仍不会发生腐蚀,且其对绝缘油电气和理化性能影响较小。

关键词 硫腐蚀铜绕组晶界工程绝缘油腐蚀性硫浓度    
Abstract

To reveal the nature of the so called oil-containing sulfur induced corrosion, existed in oil-immersed power transformers, corrosion test for copper-windings prepared via grain boundary engineering was performed in insulating oils with different concentration of corrosive sulfur at 150 ℃. The corrosion resistance of GBE copper-windings and the effect corrosion on properties of the insulating oil are studied through characterizing the formed corrosion scale on Cu surface and the dissolved substances in the insulating oil. The results indicate that GBE copper-windings present excellent corrosion resistance even in the oil with corrosive sulfur up to 2000 mg/kg, while which hardly influence the physical- and chemical-property of the insulating oil.

Key wordssulfur corrosion    copper windings    grain boundary engineering    insulating oil    corrosive sulfur concentration
收稿日期: 2017-05-11     
基金资助:国家自然科学基金 (51407018,51677015) 和国家级大学生创新训练项目 (201610611045)
作者简介:

作者简介 许云洁,女,1996年生

引用本文:

许云洁, 袁媛, 周江, 何潇, 廖瑞金. 腐蚀性硫浓度对“晶界工程”优化铜绕组抗油硫腐蚀性能的影响[J]. 腐蚀科学与防护技术, 2018, 30(2): 127-134.
Yunjie XU, Yuan YUAN, Jiang ZHOU, Xiao HE, Ruijin LIAO. Concentration Dependence of Corrosive Sulfur Induced Corrosion of GBE Copper-windings. Corrosion Science and Protetion Technology, 2018, 30(2): 127-134.

链接本文:

https://www.cspt.org.cn/CN/10.11903/1002.6495.2017.114      或      https://www.cspt.org.cn/CN/Y2018/V30/I2/127

DBDS / mg/kg Copper Windings Insulating Oil GBE copper windings GBE Insulating Oil
0 Cu-0 Oil-0 "GBE" Cu-0 "GBE" Oil-0
200 Cu-200 Oil-200 "GBE" Cu-200 "GBE" Oil-200
500 Cu-500 Oil-500 "GBE" Cu-500 "GBE" Oil-500
1000 Cu-1000 Oil-1000 "GBE" Cu-1000 "GBE" Oil-1000
2000 --- --- "GBE" Cu-2000 "GBE" Oil-2000
表1  油硫腐蚀实验样品编号
图1  铜样品腐蚀情况
图2  Cu系列样品表面的SEM像
Mass fraction / % C O Cu S
Cu-0 7.9 2.2 89.8 0.0
Cu-200 14.1 0.1 81.6 3.5
Cu-500 4.2 33.4 57.2 5.2
Cu-1000 13.5 1.1 72.5 12.9
表2  Cu系列样品表面元素组成分析
图3  GBE Cu系列样品表面的SEM像
Mass fraction / % C O Cu S
GBE Cu-0 3.8 15.9 80.1 0.2
GBE Cu-200 9.1 1.9 88.6 0.3
GBE Cu-500 17.0 80.0 94.5 0.4
GBE Cu-1000 7.1 0.8 91.9 0.1
GBE Cu-2000 12.2 1.5 85.7 0.5
表3  “GBE”Cu系列样品表面元素组成分析
图4  不同腐蚀性硫浓度下的铜样品腐蚀后绝缘油的Cu含量
图5  铜腐蚀的SEM像
图6  EBSD标定的铜样品晶界分布
图7  不同腐蚀性硫浓度下的铜样品腐蚀后绝缘油的介质损耗
图8  不同腐蚀性硫浓度下的铜样品腐蚀后绝缘油的直流电阻率
图9  不同腐蚀性硫浓度下的铜样品腐蚀后绝缘油的击穿电压
图10  不同腐蚀性硫浓度下的铜样品腐蚀后绝缘油的粘度
图11  不同腐蚀性硫浓度下的铜样品腐蚀后绝缘油的酸值
[1] Qian Y H, Yao W J, Zhou Y Y.Research on corrosive sulfur in transformer oil[J]. Guangdong Electr. Power, 2007, 20(11): 38(钱艺华, 姚唯建, 周永言. 变压器油中腐蚀性硫的分析研究[J]. 广东电力, 2007, 20(11): 38)
[2] Hao J, Liao R J, Chen G, et al.Influence of oil aging on the formation and migration behavior of space charge in oil-paper insulation dielectrics[J]. Proc. CSEE, 2012, 32(16): 173(郝建, 廖瑞金, Chen G等. 绝缘油老化对油纸绝缘介质空间电荷形成及迁移特性的影响[J]. 中国电机工程学报, 2012, 32(16): 173)
[3] Liao R J, Hao J, Yang L J, et al.Formation laws of copper products and their harms during transformer oil-paper insulation thermal aging process[J]. Trans. China Electrotech. Soc., 2012, 27(10): 52(廖瑞金, 郝建, 杨丽君等. 变压器油纸绝缘热老化过程中铜类产物生成规律及其危害[J]. 电工技术学报, 2012, 27(10): 52)
[4] Ren S Z, Pu L, Huang G Q, et al.Correlation analysis on streaming electrification and corrosive sulfur concentration in mineral insulation oil used in power transformer[J]. High Voltage Eng., 2015, 41: 440(任双赞, 蒲路, 黄国强等. 变压器用矿物绝缘油的带电度与油中腐蚀性硫浓度的相关性分析[J]. 高电压技术, 2015, 41: 440)
[5] Wan T, Qian H, Feng B, et al.Condition monitoring of corrosive sulfur reaction in transformer by copper ion analysis[J]. High Voltage Eng., 2013, 39: 1128(万涛, 钱晖, 冯兵等. 利用铜离子质量分数监测变压器中硫腐蚀状态的研究[J]. 高电压技术, 2013, 39: 1128)
[6] Bengtsson C, Dahlund M, Hajek J, et al.Oil corrosion and conducting Cu2S deposition in power transformer windings [R]. CIGRE A2-111, 2006
[7] Kobayashi T, Tanimura J, Murakami H, et al.Research on materials causing copper sulfide generation [R]. CIGRE, 2007
[8] GIGRE. Copper sulphide in transformer insulation [R].GIGRE WG A2-32, 2009
[9] Wan T, Qian H, Xu S, et al.Study on the inhibition of copper corrosion with metal passivator T551 in transformer oil[J]. Petro. Process. Petrochem., 2012, 43(11): 69(万涛, 钱晖, 徐松等. T551金属减活剂对变压器油中铜腐蚀抑制作用研究[J]. 石油炼制与化工, 2012, 43(11): 69)
[10] Zhou Q, Rao J X, Chen Y, et al.The influence of corrosion inhibitor BTA on sulfur attack of transformer oil[J]. Trans. China Electrotech. Soc., 2016, 31(4): 203(周湶, 饶俊星, 陈瑶等. 缓蚀剂BTA对变压器热老化油硫腐蚀的影响[J]. 电工技术学报, 2016, 31(4): 203)
[11] Wiklund P, Levin M, Pahlavanpour B.Copper dissolution and metal passivators in insulating oil[J]. IEEE Electr. Insul. Mag., 2007, 23(4): 6
[12] Amimoto T, Nagao E, Tanimura J, et al.Duration and mechanism for suppressive effect of Triazole-based Passivators on copper-sulfide deposition on insulating paper[J]. IEEE Trans. Dielectr. Electr. Insul., 2009, 16: 257
[13] Mehanna N A, Jaber A M Y, Oweimreen G A, et al. The minimum concentration of 1,2,3-benzotriazol to suppress sulfur corrosion of copper windings by DBDS in mineral transformer oils[J]. IEEE Trans. Dielectr. Electr. Insul., 2015, 22: 859
[14] Yuan Y, He X, Xu Z L, et al.Study of grain boundary characters under intergranular corrosion in copper conductor and its relationship with paper oil insulation in transformer[J]. Int. J. Electrochem. Sci., 2015, 10: 10806
[15] Yuan Y, Jiang Z, Xiao H, et al.The effect of annealing temperature on the corrosion behavior of copper in insulating oil contained corrosion sulfur[A]. Proceedings of 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)[C]. Toronto, Canada: IEEE, 2016: 911
[16] Jiang Z, Yuan Y, Peng Q J, et al.Improvement of copper sulfur corrosion resistant based on cold-rolled deformation [A]. Proceedings of 2016 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)[C]. Toronto, ON, Canada: IEEE, 2016: 893
[17] Watanabe T.An approach to grain boundary design of strong and ductile polycrystals[J]. Res Mech., 1984, 11: 47
[18] Xia S, Li H, Liu T G, et al.Appling grain boundary engineering to alloy 690 tube for enhancing intergranular corrosion resistance[J]. J. Nucl. Mater., 2011, 416: 303
[19] Hu C L, Xia S, Li H, et al.Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control[J]. Corros. Sci., 2011, 53: 1880
[20] Hu Y.The research and development on the measurement technology of dielectric loss of insulating oil [D]. Changsha: Hunan University, 2004(胡雁. 绝缘油介质损耗检测技术的研究与开发 [D]. 长沙: 湖南大学, 2004)
[21] Lewand L R.Corrosive sulfur in oils and transformers; Why it is such a problem [A]. Doble Presentation at IEEE /PES Transformers Committee[C]. Memphis: 2005
[22] Scatiggio F, Tumiatti V, Maina R, et al.Corrosive sulfur induced failures in oil-filled electrical power transformers and shunt reactors[J]. IEEE Trans. Power Deliv., 2009, 24: 1240
[1] 刘国勇,袁媛,任啸,廖瑞金,周江,姜有东. 套管硫腐蚀及其对油纸绝缘性能的影响[J]. 腐蚀科学与防护技术, 2019, 31(2): 137-143.
[2] 周江,袁媛. 基于晶界工程技术提升变压器绕组抗油硫腐蚀性能的研究[J]. 腐蚀科学与防护技术, 2019, 31(2): 144-148.
[3] 王丹慧,张振华,李萍,赵杉林,李飞. Fe2O3 H2S腐蚀产物的XPS研究[J]. 腐蚀科学与防护技术, 2017, 29(3): 257-260.
[4] 窦站,蒋军成,赵声萍,毛光斌. 储罐低温硫腐蚀物的产生与自燃[J]. 腐蚀科学与防护技术, 2014, 26(4): 365-372.
[5] 丁德武; 赵杉林; 张振华; 李萍; 李君华 . Fe(OH)3的高温硫腐蚀产物氧化自燃性影响因素研究[J]. 腐蚀科学与防护技术, 2007, 19(3): 186-188 .
[6] 张扬伟; 李德俊; 王富岗 . 高温时效对310不锈钢硫化行为的影响[J]. 腐蚀科学与防护技术, 2002, 14(4): 202-204 .
[7] 林海潮; 余家康; 史志明等 . 含硫原油炼制过程中活性硫腐蚀[J]. 腐蚀科学与防护技术, 2000, 12(6): 341-345 .
[8] 刘素娥; 朱自勇 . 水冷壁管受热面失效分析[J]. 腐蚀科学与防护技术, 1999, 11(3): 189-192 .
[9] 齐慧滨;何业东;李方;黄震中;朱日彰. FeWAl涂层及其耐高温硫腐蚀性能[J]. 腐蚀科学与防护技术, 1998, 10(6): 2-6.
[10] 林海潮;吕明;曹楚南;杜鹃;张鸣镝;史志明;杨秀清;赵吉翔. 特高含H_2S气井开采过程中可能发生的相态变化及其影响[J]. 腐蚀科学与防护技术, 1992, 4(4): 308-320.