Please wait a minute...
腐蚀科学与防护技术  2017, Vol. 29 Issue (2): 204-208    DOI: 10.11903/1002.6495.2016.149
  专题介绍 本期目录 | 过刊浏览 |
硅酸盐无机富锌防腐涂料的研究进展
赵书华1,2(),陈玉1,王树立1,2,饶永超1,2,刘飞飞1,陈宏1,史小军3,戴家华1
1 常州大学石油工程学院 常州 213016
2 常州大学 江苏省油气储运技术重点实验室 常州 213016
3 江南石墨烯研究院 常州 213149
Research Progress in Zn-rich Silicate Inorganic Anti-corrosion Coatings
Shuhua ZHAO1,2(),Yu CHEN1,Shuli WANG1,2,Yongchao RAO1,2,Feifei LIU1,Hong CHEN1,Xiaojun SHI3,Jiahua DAI1
1 School of Petroleum Engineering, Changzhou University, Changzhou 213016, China
2 Jiangsu Provincial Key Laboratory of Oil and Gas Storage and Transportation Technology, Changzhou University, Changzhou 213016, China
3 Jiangnan Graphene Research Institute, Changzhou 213149, China
全文: PDF(538 KB)   HTML
摘要: 

在近几年的国内外研究基础上,对硅酸盐无机富锌涂料的防腐机理、成膜物质、锌粉及纳米添加剂4个方面的研究进展进行综述,并结合现场施工情况总结其施工特点,最后指出该涂料存在的问题及未来的发展方向。

关键词 涂料硅酸盐富锌防腐    
Abstract

Based on the research at home and abroad in recent years, reviewed progress of silicate inorganic zinc-rich coating from anti-corrosion mechanism, membrane material, zinc powder and nano additives four aspects respectively and summed up its construction characteristics combined with the construction site situation. Finally, the existing problems and future developing trends of the coating were also put forward.

Key wordscoating    silicate    zinc-rich    anti-corrosive
收稿日期: 2016-06-20     
基金资助:资助项目 江苏省产学研前瞻项目 (BY2014037-33)和江南石墨烯研究院开放课题 (KFKT201502)

引用本文:

赵书华,陈玉,王树立,饶永超,刘飞飞,陈宏,史小军,戴家华. 硅酸盐无机富锌防腐涂料的研究进展[J]. 腐蚀科学与防护技术, 2017, 29(2): 204-208.
Shuhua ZHAO, Yu CHEN, Shuli WANG, Yongchao RAO, Feifei LIU, Hong CHEN, Xiaojun SHI, Jiahua DAI. Research Progress in Zn-rich Silicate Inorganic Anti-corrosion Coatings. Corrosion Science and Protetion Technology, 2017, 29(2): 204-208.

链接本文:

https://www.cspt.org.cn/CN/10.11903/1002.6495.2016.149      或      https://www.cspt.org.cn/CN/Y2017/V29/I2/204

图1  硅酸盐模数对固化时间及附着力的影响
Test project Unmodifiedcoatings Modified coatings
Adhesion / grade 2 1~2
Pencil hardness 6 H >6 H
Impact strength / (kgcm) 30 40
Flexibility / grade 10 2
Salt spray resistance/h 720 1000
表1  硅丙乳液改性前后无机富锌涂料基本性能比较[14]
[1] Xu J, Liu G J, Liu S H, et al.Research progress on waterborne anticorrosion coatings[J]. Mod. Paint Finish., 2010, 13(12): 21
[1] (徐晶, 刘国军, 刘素花等. 水性防腐涂料的研究进展[J]. 现代涂料与涂装, 2010, 13(12): 21)
[2] Marchebois H, Joiret S, Savall C, et al.Characterization of zinc-rich powder coatings by EIS and Raman spectroscopy[J]. Surf. Coat. Technol., 2002, 157: 151
[3] Guo M, Zhang F, Zhang H Z, et al.Common mistakes while using zinc-rich inorganic coatings[J]. Mod. Paint Finish., 2007, 10(9): 52
[3] (郭铭, 张锋, 张洪志等. 无机富锌涂料使用时的几个误区[J]. 现代涂料与涂装, 2007, 10(9): 52)
[4] Gergely A, Pfeifer é, Bertóti I, et al.Corrosion protection of cold-rolled steel by zinc-rich epoxy paint coatings loaded with Nano-size alumina supported polypyrrole[J]. Corros. Sci., 2011, 53: 3486
[5] Yang Q, Yang X H, Wang P, et al.The viscosity properties of zinc-rich coatings from sodium silicate solution modified with aluminium chloride[J]. Pigm. Resin Technol., 2009, 38: 153
[6] Greene M E, Morena R.Potassium silicate frits for coating metals[P]. US, 6423415B1, 2002
[7] Zhang L Y, Ma A B, Jiang J H, et al.Anti-corrosion performance of waterborne Zn-rich coating with modified silicon-based vehicle and lamellar Zn (Al) pigments[J]. Prog. Nat. Sci.: Mater. Int., 2012, 22: 326
[8] Yuan M R, Lu J T, Kong G, et al.Effect of silicate anion distribution in sodium silicate solution on silicate conversion coatings of hot-dip galvanized steels[J]. Surf. Coat. Technol., 2011, 205: 4466
[9] Schutt J S.Alkali-metal silicate binders and methods of manufacture[P]. US, 4162169A, 1979
[10] Iler R K.Process for preparing sols of colloidal particles of reacted amorphous silica and products thereof [P]. US, 2786042, 1957
[11] Wang Z A, Tian Y L, Liu B P.Research of water-borne zinc-rich epoxy primer and the property evaluation[J]. China Coat., 2008, 23(5): 52
[11] (王兆安, 田玉廉, 刘佰平. 水性环氧富锌底漆的研究及评价[J]. 中国涂料, 2008, 23(5): 52)
[12] Wei X Y.Super corrosion retarding water borne inorgannic zinc-rich coatings[J]. Paint Coat., 2007, 37(5): 40
[12] (魏向阳. 新一代水性无机富锌涂料[J]. 涂料工业, 2007, 37(5): 40)
[13] Zhou C M.Preparation of silicate waterborne inorganic zinc-rich anticorrosion coatings and study on its performance [D]. Shenyang:Shenyang University of Industry, 2014
[13] (周春婧. 硅酸盐水性无机富锌防腐涂料的制备及性能研究 [D]. 沈阳: 沈阳工业大学, 2014)
[14] Zhou L.Study on silicone-acrylic emulsion modified high SiO2/K2O molar ratio potassium silicate waterborne inorganic Zinc-rich coatings [D]. Changsha: Hunan University, 2014
[14] (周磊. 硅丙乳液改性高模数硅酸钾水性无机富锌涂料的研究 [D]. 长沙: 湖南大学, 2014)
[15] Jagtap R N, Nambiar R, Hassan S Z, et al.Predictive power for life and residual life of the zinc rich primer coatings with electrical measurement[J]. Prog. Org. Coat., 2007, 58: 253
[16] Zhang L Y, Jiang J H, Ma A B, et al.Inorganic flake Zinc-rich coating modified by silicate-acrylate copolymerization emulsion[J]. Corros. Sci. Prot. Technol., 2010, 22: 142
[16] (张留艳, 江静华, 马爱斌等. 硅丙乳液在鳞片状无机富锌涂料中的应用[J]. 腐蚀科学与防护技术, 2010, 22: 142)
[17] Liu L, Chen L, Wang Z Q, et al.Research progress of water-borne zinc-rich inorganic coating in hydraulic engineering metal structures[J]. Yangtze River, 2013, 44(20): 61
[17] (刘磊, 陈亮, 汪在芹等. 水工金属结构水性无机富锌涂料研究进展[J]. 人民长江, 2013, 44(20): 61)
[18] Yang Y, Xiao S B, Che Y C, et al.Application status and development trend of cold sprayed zinc coatings[J]. Electr. Finish., 2015, 34: 1293
[18] (杨焰, 肖邵博, 车轶材等. 冷涂锌涂料的应用现状及发展趋势[J]. 电镀与涂饰, 2015, 34: 1293)
[19] Zhang Q, Huang J Q, Zhao M Q, et al.Review on mass production and industrialization of carbon nanotubes[J]. Sci. Sin. Chim., 2013, 43: 641
[19] (张强, 黄佳琦, 赵梦强等. 碳纳米管的宏量制备及产业化[J]. 中国科学: 化学, 2013, 43: 641)
[20] Peng M, Liao Z J, Qi J, et al.Nonaligned carbon nanotubes partially embedded in polymer matrixes: a novel route to superhydrophobic conductive surfaces[J]. Langmuir, 2010, 26: 13572
[21] Gong S S.Study on water-borne inorganic zinc-rich paints modified by one-dimensional nanomaterials [D]. Wuhan: Central China Normal University, 2009
[21] (龚书生. 一维纳米材料改性水性无机富锌涂料的研究 [D]. 武汉: 华中师范大学, 2009)
[22] Lee C, Wei X D, Kysar J W, et al.Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321: 385
[23] Balandin A A, Ghosh S, Bao W Z, et al.Superior thermal conductivity of single-layer graphene[J]. Nano Lett., 2008, 8: 902
[24] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666
[25] Bunch J S, Verbridge S S, Alden J S, et al.Impermeable atomic membranes from graphene sheets[J]. Nano Lett., 2008, 8: 2458
[26] Liu S B, Zeng T H, Hofmann M, et al.Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress[J]. ACS Nano, 2011, 5: 6971
[27] Tu Y S, Lv M, Xiu P, et al.Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets[J]. Nat. Nanotechnol., 2013, 8: 594
[28] Singh B P, Jena B K, Bhattacharjee S, et al.Development of oxidation and corrosion resistance hydrophobic graphene oxide-polymer composite coating on copper[J]. Surf. Coat. Technol., 2013, 232: 475
[29] Hu W B, Peng C, Luo W J, et al.Graphene-based antibacterial paper[J]. ACS Nano, 2010, 4: 4317
[30] Tang C L, Wang L.A kind of graphene inorganic coatings and its using method [P]. China Pat, 201310131419, 2013
[30] (唐长林, 王梁.一种石墨烯无机涂料及其使用方法 [P]. 中国专利, 201310131419, 2013)
[31] Wan C Y, Wu W F.The preparation and using method of inorganic anti-corrosion coating [P]. China Pat, 201410077551, 2014
[31] (万春玉, 吴伟峰. 无机防腐涂料及其制备方法和使用方法 [P]. 中国专利, 201410077551, 2014)
[32] Wang S L, Kang T T, Rao Y C, et al.The preparation method of waterborne inorganic anticorrosive and composite coatings [P]. China Pat, 104877402A, 2015
[32] (王树立, 康甜甜, 饶永超等. 一种复合型水性无机防腐涂料及制备方法 [P]. 中国专利, 104877402A, 2015)
[1] 陶友卓,马廷霞,李振军,陶厅. 埋地管道外防腐层补伤材料层次分析[J]. 腐蚀科学与防护技术, 2019, 31(6): 603-608.
[2] 孙静,李至秦,杨名亮,牛永锋,吴建华. 耐核辐射防护涂料研究进展[J]. 腐蚀科学与防护技术, 2019, 31(5): 544-550.
[3] 李爽,张双红,杨波,郭华超,李悦,文芳. 石墨烯防腐涂料研究进展[J]. 腐蚀科学与防护技术, 2019, 31(4): 455-461.
[4] 王煦,黄国飞. 架空导线不同防腐措施的耐腐蚀性能比较[J]. 腐蚀科学与防护技术, 2019, 31(2): 169-173.
[5] 宁亮,陈云,杨凯,王贤明,张善贵. 一种输电铁塔用高适应性防腐涂料的研制和应用[J]. 腐蚀科学与防护技术, 2019, 31(2): 149-154.
[6] 刘栓,周开河,吴跃斌,方云辉,蔡辉,李鹏,管金胜,李少华,段福平,李延伟,胡家元,卢光明,蒲吉斌,王立平. 石墨烯改性重防腐涂料在世界最高输电铁塔的防腐应用[J]. 腐蚀科学与防护技术, 2019, 31(1): 114-120.
[7] 向龙斌,张吉昌,刘心蕊,王小通,李东安. 微生物腐蚀与采出水的微生物防腐蚀—回顾与应用实例[J]. 腐蚀科学与防护技术, 2019, 31(1): 85-91.
[8] 谭侃,罗静,丁昕瑶,刘仁,刘晓亚. 基于聚苯胺的光固化防腐蚀涂层[J]. 腐蚀科学与防护技术, 2019, 31(1): 33-38.
[9] 丁长军,杨焕新,王建东,马骉,宋畅,许学贵,崔丽琨,毕克东. 接地网材料的腐蚀及其防护发展[J]. 腐蚀科学与防护技术, 2019, 31(1): 109-113.
[10] 赵书华, 黄从明, 王树立, 陈宏, 史小军, 才政. 氧化石墨烯/环氧复合涂层研究进展[J]. 腐蚀科学与防护技术, 2018, 30(5): 552-556.
[11] 刘敏, 赵书彦, 刘福春, 韩恩厚, 钱洲亥, 祝郦伟. 抗静电耐腐蚀涂层的制备及性能研究[J]. 腐蚀科学与防护技术, 2018, 30(5): 459-466.
[12] 周亚倩, 郝璐, 朱凯明, 于德梅. 聚吡咯的合成及其在金属防腐蚀领域的应用[J]. 腐蚀科学与防护技术, 2018, 30(5): 557-562.
[13] 赵君, 闫茂成, 吴长访, 舒韵, 郭爱玲. 干湿交替土壤环境中剥离涂层管线钢阴极保护有效性[J]. 腐蚀科学与防护技术, 2018, 30(5): 508-512.
[14] 李玉峰, 李继玉, 祁实, 姚征, 祝晶晶. 柠檬酸掺杂聚苯胺/硅溶胶复合涂层的防腐性能研究[J]. 腐蚀科学与防护技术, 2018, 30(4): 426-430.
[15] 张凯, 文邦伟, 谭勇. 超疏水膜层防腐蚀机理及气相法制备技术研究进展[J]. 腐蚀科学与防护技术, 2018, 30(4): 441-448.