Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (5): 353-364    DOI: 10.11901/1005.3093.2021.113
  研究论文 本期目录 | 过刊浏览 |
Al耐热奥氏体不锈钢的团簇式成分设计
张姝琪1, 董丹丹2(), 万鹏3, 王清1, 董闯1(), 杨锐4
1.大连理工大学 三束材料改性教育部重点实验室 材料科学与工程学院 大连 116024
2.大连大学物理科学与技术学院 大连 116622
3.佛山市顺德区美的电热电器制造有限公司 佛山 528300
4.中国科学院金属研究所 沈阳 110016
Composition Design of Alumina-Forming Austenitic Stainless Steels Based on Cluster-Plus-Glue-Atom Model
ZHANG Shuqi1, DONG Dandan2(), WAN Peng3, WANG Qing1, DONG Chuang1(), YANG Rui4
1.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2.College of Physical Science and Technology, Dalian University, 116622, China
3.Foshan Shunde Midea Electrical Heating Appliances Manufacturing Co. Ltd., Foshan 528300, China
4.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张姝琪, 董丹丹, 万鹏, 王清, 董闯, 杨锐. 含Al耐热奥氏体不锈钢的团簇式成分设计[J]. 材料研究学报, 2022, 36(5): 353-364.
Shuqi ZHANG, Dandan DONG, Peng WAN, Qing WANG, Chuang DONG, Rui YANG. Composition Design of Alumina-Forming Austenitic Stainless Steels Based on Cluster-Plus-Glue-Atom Model[J]. Chinese Journal of Materials Research, 2022, 36(5): 353-364.

全文: PDF(8791 KB)   HTML
摘要: 

表面生成Al2O3保护膜的奥氏体不锈钢具有良好的高温服役性能,为了使Al强烈促进铁素体的生成需要精确匹配奥氏体稳定元素Ni和Al的含量。为此,本文先引入“团簇加连接原子”结构模型,解析该类不锈钢的成分特征,确定其16原子团簇式,进而结合当量计算并基于橡树岭实验室推出的成分,固定C含量(质量分数)为0.1%,设计了固定Ni含量提高Al(代替Cr)含量和固定Al含量提高Ni(代替Fe)含量两个成分系列,分别为Al x Si0.05Nb0.15-Fe8.7Ni3.0Mn0.3-Cr3.6-x Mo0.2(x=0.8,1.0和1.1)和Al1Si0.05Nb0.15-Fe11.7-y Ni y Mn0.3-Cr2.6Mo0.2(y=3.2,3.4,3.7和4.0),研究了Ni和Al的不同匹配对固溶水淬(1250℃/1.5 h)加时效态(800℃/24 h)奥氏体稳定性的影响。Ni含量为3.0的16原子团簇式,Al含量为0.8时为单相奥氏体;Al含量为1.0和1.1时,奥氏体失稳而铁素体形成。在Al含量为1.0的16原子团簇式中,Ni含量为3.2~4.0时均为单相奥氏体。即在16原子团簇式模型下Al0.8(2.45%)和Al1(3.08%)分别需要Ni3.0(20.00%)和Ni3.2(21.43%)以避免形成铁素体,最终确定该类不锈钢的理想团簇式为[(Al,Si,Nb)1-(Fe,Ni,Mn)12](Cr,Mo,W)3

关键词 金属材料含Al不锈钢“团簇加连接原子”结构模型耐热奥氏体不锈钢合金化组织稳定性    
Abstract

Alumina-forming austenitic (AFA) stainless steel has good high-temperature-oxidation resistance owing to the addition of Al. However, Al may strongly promote the formation of ferrite, which can seriously decrease the creep resistance of the steel. In order to form single-phase austenite, the amount of austenitic stable elements Ni and Al should be accurately tailored. Therefore, the alumina-forming 190 heat resistant stainless steels were analyzed with the so called cluster-plus-glue-atom model, which was previously developed by our group. In the present case, a 16-atom-cluster formula, including 1 center atom, 12 shell atoms and 3 glue atoms, simplified as [Al1-Fe12]-Cr3, is adopted,while the composition proposed by Oak Ridge National Laboratory, and the equivalent complementation of Ni and Cr are taken into consideration. Thereby, two series of AFA stainless steels with a constant carbon content of 0.1% (mass fraction) are designed as: Al x Si0.05Nb0.15-Fe8.7Ni3.0Mn0.3-Cr3.6-x Mo0.2 (x=0.8, 1.0 and 1.1) and Al1Si0.05Nb0.15-Fe11.7-y Ni y Mn0.3-Cr2.6Mo0.2 (y=3.2, 3.4, 3.7 and 4.0), namely, fixed Ni, but varying Al (instead of Cr) content for the former series, and fixed Al, but varying Ni (instead of Fe) content for the later ones, respectively. The effect of solution treatment (1250℃/1.5 h) plus water quenching and the above treatment plus aging treatment (800℃/24 h) on the two series alloys was carefully characterized by means of X-ray diffractometer, optical microscope, scanning electron microscope and Vickers hardness tester. Results show that for the alloys with fixed Ni content of 3.0 designed according to the 16-atom-cluster formula, the matrix is single-phase austenite when Al is 0.8; while ferrite is formed when Al is 1.0 and 1.1. For the alloys with fixed Al of 1.0, the matrix remains single-phase austenite when Ni ranges from 3.2 to 4.0. However, Ni3.2 is enough to avoid the formation of ferrite, while also conforming to economic principle. The ideal cluster formula of AFA stainless steels is identified as [(Al,Si,Nb)1-(Fe,Ni,Mn)12](Cr,Mo,W)3, which describes the average distribution of atoms in alloys.

Key wordsmetallic materials    AFA stainless steels    cluster-plus-glue-atom model    heat resistant austenitic stainless steel    alloying    structural stability
收稿日期: 2021-01-24     
ZTFLH:  TG142.25  
基金资助:国家自然科学基金(51801017);大连市科技创新基金重点学科(研究方向)重大课题项目(2020JJ25CY004);顺德区科技计划(201911220001)
作者简介: 张姝琪,女,1989年生,博士生
Mixing enthalpy △HShell atoms
FeMnNi
Center atomsAl-11-19-22
Si-35-45-40
Ti-17-8-35
V-7-1-18
Nb-16-4-30
Ta-15-4-29
Glue atomsCr-12-7
Mo-25-7
W06-3
表1  中心原子、壳层原子和连接原子之间的混合焓
Cluster formulaMarkElement content/%, mass fraction

Solutionized

hardness

(HV)

Calculated strength

/MPa

Aged

hardness

(HV)

Calculated strength

/MPa

CreqNieqNieq/Creq
RP0.2RmRP0.2Rm
Al0.8Si0.05Nb0.15-Fe8.7Ni3.0Mn0.3-Cr2.8Mo0.2Al0.8Ni3.0Fe-2.45Al-0.16Si-1.58Nb-19.99Ni-1.87Mn-16.53Cr-2.18Mo-0.10C181.44404.0633.5223.56547.2721.928.823.00.80
Al1.0Si0.05Nb0.15-Fe8.7Ni3.0Mn0.3-Cr2.6Mo0.2Al1.0Ni3.0Fe-3.08Al-0.16Si-1.59Nb-20.10Ni-1.88Mn-15.43Cr-2.19Mo-0.10C224.46550.3723.8255.38655.4788.829.323.10.79
Al1.1Si0.05Nb0.15-Fe8.7Ni3.0Mn0.3-Cr2.5Mo0.2Al1.1Ni3.0Fe-3.40Al-0.16Si-1.60Nb-20.16Ni-1.89Mn-14.88Cr-2.20Mo-0.10C239.60601.7755.6280.84742.0842.229.523.20.79
Al1.0Si0.05Nb0.15-Fe8.5Ni3.2Mn0.3-Cr2.6Mo0.2Al1.0Ni3.2Fe-3.08Al-0.16Si-1.59Nb-21.43Ni-1.88Mn-15.42Cr-2.19Mo-0.10C235.60588.1747.2274.82721.5829.629.324.50.84
Al1.0Si0.05Nb0.15-Fe8.3Ni3.4Mn0.3-Cr2.6Mo0.2Al1.0Ni3.4Fe-3.08Al-0.16Si-1.59Nb-22.75Ni-1.88Mn-15.41Cr-2.19Mo-0.10C231.35573.7738.3271.62710.6822.929.225.80.88
Al1.0Si0.05Nb0.15-Fe8.0Ni3.7Mn0.3-Cr2.6Mo0.2Al1.0Ni3.7Fe-3.07Al-0.16Si-1.59Nb-24.74Ni-1.88Mn-15.40Cr-2.19Mo-0.10C218.21529.0710.7277.80731.6835.829.227.80.95
Al1.0Si0.05Nb0.15-Fe7.7Ni4.0Mn0.3-Cr2.6Mo0.2Al1.0Ni4.0Fe-3.07Al-0.16Si-1.59Nb-26.72Ni-1.88Mn-15.38Cr-2.18Mo-0.10C242.79612.6762.3304.81823.5892.629.229.71.02
表2  设计合金的团簇成分式、标记、元素含量、硬度、计算强度(根据奥氏体不锈钢维氏硬度与拉伸强度的换算公式[30]计算)及当量(根据Uggowitzer的当量公式[24]计算)
图1  基于团簇结构模型的含铝奥氏体不锈钢的成分设计思路
图2  设计合金经1250℃/1.5 h固溶处理和800℃/24 h时效处理的XRD谱
图3  晶格常数a与Nieq/Creq当量比的关系
图4  系列合金Al0.8Ni3.0、Al1.0Ni3.0、Al1.1Ni3.0以及Al1.0Ni3.2经1250℃/1.5 h固溶处理后和经800℃/24 h时效后的金相组织
图5  系列合金Al0.8Ni3.0、Al1.0Ni3.0、Al1.1Ni3.0、Al1.0Ni3.2、Al1.0Ni3.4、Al1.0Ni3.7以及Al1.0Ni4.0经过800℃/24 h时效后的二次电子形貌
图6  给出了系列合金的典型背散射照片
图7  设计合金及参考文献中的190个含铝奥氏体不锈钢[10~21]在Schaeffler组织结构图[31]上的分布
图8  固溶态和时效态的显微硬度与相对奥氏体稳定能力Nieq/Creq的关系
图9  设计合金根据硬度计算得到的估算强度
1 Nie S H, Chen Y, Ren X, et al. Corrosion of alumina-forming austenitic steel Fe-20Ni-14Cr-3Al-0.6Nb-0.1Ti in supercritical water [J]. J. Nucl. Mater., 2010, 399: 231
doi: 10.1016/j.jnucmat.2010.01.025
2 Kondo K, Miwa Y, Okubo N, et al. Development of corrosion-resistant improved Al-doped austenitic stainless steel [J]. J. Nucl. Mater., 2011, 417: 892
doi: 10.1016/j.jnucmat.2011.01.083
3 Wang J, Qiao Y F, Dong N, et al. The influence of temperature on the oxidation mechanism in air of HR3C and aluminum-containing 22Cr-25Ni austenitic stainless steels [J]. Oxid. Met., 2018, 89: 713
doi: 10.1007/s11085-017-9817-2
4 Fujioka T, Kinugasa M, Iizumi S, et al. Oxidation-resisting austenitic stainless steel [P]. US Pat, 4063935A, 1977
5 Pivin J C, Delaunay D, Roques-Carmes C, et al. Oxidation mechanism of Fe-Ni-(20-25%)Cr-5% Al alloys-influence of small amounts of yttrium on oxidation kinetics and oxide adherence [J]. Corros. Sci., 1980, 20: 351
doi: 10.1016/0010-938X(80)90005-0
6 Ramakrishnan V, Mcgurty J A, Jayaraman N. Oxidation of high-aluminum austenitic stainless steels [J]. Oxid. Met., 1988, 30: 185
doi: 10.1007/BF00666596
7 Satyanarayana D V V, Malakondaiah G, Sarma D S. Steady state creep behaviour of NiAl hardened austenitic steel [J]. Mater. Sci. Eng., 2002, 323A: 119
8 Pint B A, Peraldi R, Maziasz P J. The use of model alloys to develop corrosion-resistant stainless steels [J]. Mater. Sci. Forum, 2004, 461-464: 815
doi: 10.4028/www.scientific.net/MSF.461-464.815
9 Adams T M, Korinko P, Duncan A. Evaluation of oxidation and hydrogen permeation in Al-containing stainless steel alloys [J]. Mater. Sci. Eng., 2006, 424A: 33
10 Brady M P, Yamamoto Y, Santella M L, et al. Effects of minor alloy additions and oxidation temperature on protective alumina scale formation in creep-resistant austenitic stainless steels [J]. Scripta Mater., 2007, 57: 1117
doi: 10.1016/j.scriptamat.2007.08.032
11 Yamamoto Y, Brady M P, Lu Z P, et al. Alumina-forming austenitic stainless steels strengthened by laves phase and MC carbide precipitates [J]. Metall. Mater. Trans., 2007, 38A: 2737
12 Yamamoto Y, Brady M P, Lu Z P, et al. Creep-resistant, Al2O3-forming austenitic stainless steels [J]. Science, 2007, 316: 433
pmid: 17446398
13 Brady M P, Yamamoto Y, Santella M L, et al. The development of alumina-forming austenitic stainless steels for high-temperature structural use [J]. JOM, 2008, 60(7): 12
14 Yamamoto Y, Takeyama M, Lu Z P, et al. Alloying effects on creep and oxidation resistance of austenitic stainless steel alloys employing intermetallic precipitates [J]. Intermetallics, 2008, 16: 453
doi: 10.1016/j.intermet.2007.12.005
15 Yamamoto Y, Santella M L, Brady M P, et al. Effect of alloying additions on phase equilibria and creep resistance of alumina-forming austenitic stainless steels [J]. Metall. Mater. Trans., 2009, 40A: 1868
16 Yamamoto Y, Brady M P, Santella M L, et al. Overview of strategies for high-temperature creep and oxidation resistance of alumina-forming austenitic stainless steels [J]. Metall. Mater. Trans., 2011, 42A: 922
17 Yamamoto Y, Muralidharan G, Brady M P. Development of L12-ordered Ni3(Al, Ti)-strengthened alumina-forming austenitic stainless steel alloys [J]. Scripta Mater., 2013, 69: 816
doi: 10.1016/j.scriptamat.2013.09.005
18 Xu X Q, Zhang X F, Chen G L, et al. Improvement of high-temperature oxidation resistance and strength in alumina-forming austenitic stainless steels [J]. Mater. Lett., 2011, 65: 3285
doi: 10.1016/j.matlet.2011.07.021
19 Xu X Q, Zhang X F, Sun X Y, et al. Effects of silicon additions on the oxide scale formation of an alumina-forming austenitic alloy [J]. Corros. Sci., 2012, 65: 317
doi: 10.1016/j.corsci.2012.08.039
20 Sa X R. Mechanical properties of high aluminum 304, 316L and 310S steels and effect of aluminum on action mechanism [D]. Lanzhou: Lanzhou University of Technology, 2013
20 撒兴瑞. 铸造高铝304、316L、310S钢的性能及铝元素的作用机制 [D]. 兰州: 兰州理工大学, 2013
21 Yao L. The effect and action mechanism of Al element on microstucture and properties of 17-7PH、2205 stainless steel [D]. Lanzhou: Lanzhou University of Technology, 2013
21 姚 亮. A1元素对17-7PH、2205不锈钢组织、性能的影响及作用机制 [D]. 兰州: 兰州理工大学, 2013
22 Pickering F B. Physical Metallurgy and the Design of Steels [M]. London: Applied Science Publishers, 1978: 62
23 Tchizhik A A, Tchizhik T A, Tchizhik A A. Optimization of the heat treatment for steam and gas turbine parts manufactured from 9-12% Cr steels [J]. J. Mater. Process. Technol., 1998, 77: 226
doi: 10.1016/S0924-0136(97)00421-4
24 Uggowitzer P J, Bähre W F, Wohlfromm H, et al. Nickel-free high nitrogen austenitic stainless steels produced by metal injection moulding[J]. Mater. Sci. Forum, 1999, 318-320: 663
doi: 10.4028/www.scientific.net/MSF.318-320.663
25 La P Q, Li Y F, Liu S G. Corrosion resistance of aluminum-doped 316L stainless steel [J]. Mater. Prot., 2010, 43(12): 62
25 喇培清, 李玉峰, 刘闪光. 316L不锈钢中添加Al后的抗腐蚀性能 [J]. 材料保护, 2010, 43(12): 62
26 Cowley J M. Short-and long-range order parameters in disordered solid solutions [J]. Phys. Rev., 1960, 120: 1648
doi: 10.1103/PhysRev.120.1648
27 Wang Q, Zha Q F, Liu E X, et al. Composition design of high-strength martensitic precipitation hardening stainless steels based on a cluster model [J]. Acta Metall. Sin., 2012, 48: 1201
doi: 10.3724/SP.J.1037.2012.00053
27 王 清, 查钱锋, 刘恩雪 等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计 [J]. 金属学报, 2012, 48: 1201
28 Zhang J Z, Wen D H, Jiang B B, et al. Effect of minor Ta-and Zr-alloying on high-temperature microstructural stability of Fe-Cr-Al-based ferritic stainless steels [J]. Chin. J. Mater. Res., 2017, 31: 336
28 张军政, 温冬辉, 姜贝贝 等. 微量Ta和Zr对Fe-Cr-Al系不锈钢高温组织稳定性的影响 [J]. 材料研究学报, 2017, 31: 336
doi: 10.11901/1005.3093.2016.695
29 Dong C, Dong D D, Wang Q. Chemical units in solid solutions and alloy composition design [J]. Acta Metall. Sin., 2018, 54: 293
29 董 闯, 董丹丹, 王 清. 固溶体中的化学结构单元与合金成分设计 [J]. 金属学报, 2018, 54: 293
30 Chen B C, Li G F, Yang W. Conversion relation of leeb-hardness, vickers-hardness and strength of austenitic stainless steels [J]. Mater. Mechan. Eng., 2009, 33(9): 37
30 陈冰川, 李光福, 杨 武. 奥氏体不锈钢里氏硬度、维氏硬度及强度之间的换算关系 [J]. 机械工程材料, 2009, 33(9): 37
31 Schaeffler A L. Constitution diagram for stainless steel weld metal [J]. Met. Prog., 1949, 56: 680
32 De Cicco H, Luppo M I, Gribaudo L M, et al. Microstructural development and creep behavior in A286 superalloy [J]. Mater. Charact., 2004, 52: 85
doi: 10.1016/j.matchar.2004.03.007
33 Trotter G, Hu B, Sun A Y, et al. Precipitation kinetics during aging of an alumina-forming austenitic stainless steel [J]. Mater. Sci. Eng., 2016, 667A: 147
34 Zhou D Q, Zhao W X, Mao H H, et al. Precipitate characteristics and their effects on the high-temperature creep resistance of alumina-forming austenitic stainless steels [J]. Mater. Sci. Eng., 2015, 622A: 91
35 Trotter G, Baker I. Orientation relationships of Laves phase and NiAl particles in an AFA stainless steel [J]. Philos. Mag., 2015, 95: 4078
doi: 10.1080/14786435.2015.1111529
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.