Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (6): 425-433    DOI: 10.11901/1005.3093.2019.599
  研究论文 本期目录 | 过刊浏览 |
BiMg-3Al-3Nd合金显微组织和力学性能的影响
陈亮, 王丽萍, 冯义成(), 王雷, 赵思聪
哈尔滨理工大学材料科学与工程学院 哈尔滨 150040
Effect of Bi on Microstructure and Mechanical Properties of Mg-3Al-3Nd Alloy
CHEN Liang, WANG Liping, FENG Yicheng(), WANG Lei, ZHAO Sicong
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
引用本文:

陈亮, 王丽萍, 冯义成, 王雷, 赵思聪. BiMg-3Al-3Nd合金显微组织和力学性能的影响[J]. 材料研究学报, 2020, 34(6): 425-433.
Liang CHEN, Liping WANG, Yicheng FENG, Lei WANG, Sicong ZHAO. Effect of Bi on Microstructure and Mechanical Properties of Mg-3Al-3Nd Alloy[J]. Chinese Journal of Materials Research, 2020, 34(6): 425-433.

全文: PDF(10143 KB)   HTML
摘要: 

使用扫描电子显微镜(SEM)和光学显微镜(OM)观察、X-射线衍射(XRD)分析以及力学性能测试等手段研究了Bi含量对Mg-3Al-3Nd合金的显微组织和力学性能的影响。结果表明:添加Bi元素可细化Mg-3Al-3Nd合金的组织。当Bi含量(质量分数)为1%时晶粒最小,晶粒尺寸从1854±58 μm减小到890±64 μm;Mg-3Al-3Nd合金由呈网状分布在晶界的Al11Nd3相和分布在晶内的颗粒状Al2Nd组成;随着Bi含量的提高Al11Nd3相和Al2Nd相的数量减少,晶内的BiNd相数量增加;Bi能明显改善Mg-3Al-3Nd合金室温和高温力学性能,Bi含量为1%时其室温和高温力学性能最佳。室温抗拉强度和延伸率分别为167±2.3 MPa和(16.1±0.3)%,高温抗拉强度及延伸率分别为136±1.7 MPa和(19.3±0.3)%。

关键词 金属材料镁合金Bi显微组织力学性能    
Abstract

The effect of Bi on the microstructure and mechanical properties of Mg-3Al-3Nd alloy was investigated by scanning electron microscope (SEM), optical microscope (OM), X-ray diffraction (XRD) and tensile test. The results show that the addition of Bi can refine the microstructure of Mg-3Al-3Nd alloy. When the content (mass fraction) of Bi is 1% the grain size of Mg-3Al-3Nd alloy is the smallest, whilst the grain size reduced from 1854±58 μm for the plain Mg-3Al-3Nd alloy to 890±64 μm for the alloy with 1% Bi addition. The Mg-3Al-3Nd alloy is mainly composed of Al11Nd3 phase distributed at grain boundaries and granular Al2Nd distributed within grains. With the increasing Bi content, the volume fraction of Al11Nd3 phase and Al2Nd phase decrease, and the volume fraction of BiNd phase distributed within grains increases. The mechanical properties of Mg-3Al-3Nd alloy at room temperature and high temperature are significantly improved with addition of Bi. The ultimate tensile strength and elongation at break of Mg-3Al-3Nd alloy with 1% Bi addition at room temperature and high temperature is 167±2.3 MPa and 16.1±0.3%, 136±1.7 MPa and 19.3±0.3%, respectively.

Key wordsmetallic materials    magnesium alloy    Bi    microstructure    mechanical property
收稿日期: 2019-12-24     
ZTFLH:  TG113.12  
基金资助:国家自然科学基金(51804090);黑龙江省科学基金(E2018045)
作者简介: 陈亮,男,1995年生,硕士生
AlloysAlNdBiMg
Mg-3Al-3Nd330Bal.
Mg-3Al-3Nd-1Bi331Bal.
Mg-3Al-3Nd-2Bi332Bal.
Mg-3Al-3Nd-3Bi333Bal.
表1  实验合金的名义成分
图1  拉伸试样的尺寸
图2  Mg-3Al-3Nd-xBi合金的低倍光学显微组织
图3  Mg-3Al-3Nd-xBi合金的晶粒尺寸
图4  Mg-3Al-3Nd-xBi合金的XRD衍射图谱
图5  Mg-3Al-3Nd-xBi合金的光学显微组织
图 6  Mg-3Al-3Nd-xBi合金的SEM形貌
PointMgAlNdBiPhases
A38.4644.5517.000.00Al11Nd3
B58.5426.6514.770.04Al2Nd
C53.8528.6415.510.00Al2Nd
D46.5442.810.580.08Al11Nd3
E4.280.0049.0446.68BiNd
F15.4367.2417.330.00Al11Nd3
G3.850.0047.6548.5BiNd
H45.8942.2611.850.00Al11Nd3
I8.490.0046.5444.97BiNd
表2  图6中各点EDS分析结果(原子分数,%)
PhasesMg-AlMg-NdAl-NdBi-MgBi-AlBi-Nd
△H-1.85-10.98-58.74-9.619.31-85.48
表3  Mg-Al-Nd-Bi合金中各相生成焓 (kJ/mol)
图7  Mg-3Al-3Nd-xBi合金的室温拉伸性能
图8  Mg-3Al-3Nd-xBi合金的高温拉伸性能
图 9  Mg-3Al-3Nd-xBi合金室的室温拉伸断口形貌
图 10  Mg-3Al-3Nd-xBi合金的高温拉伸断口形貌
[1] Qian M, Cao P. Discussions on grain refinement of magnesium alloys by carbon inoculation [J]. Scr. Mater., 2005, 52(5): 415
doi: 10.1016/j.scriptamat.2004.10.014
[2] Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue, 2019, 120: 46
doi: 10.1016/j.ijfatigue.2018.10.019
[3] Wang N, Bai P C, Hou X H, et al. Effect of Nd addition on microstructure and corrosion resistance of AZ91 magnesium alloy [J]. Chin. J. Mater. Res., 2011, 25(2): 215
[3] (王娜, 白朴存, 侯小虎, 等. Nd对AZ91镁合金显微组织和耐腐蚀性能的影响 [J]. 材料研究学报, 2011, 25(2): 215)
[4] Wang B J, Luan J Y, Xu D K, et al. Research Progress on the Corrosion Behavior of Magnesium-Lithium-Based Alloys: A Review [J]. Acta Metall. Sin-Engl., 2019, 32: 1
doi: 10.1007/s40195-018-0847-9
[5] Balasubramani N, Srinivasan A, Pillai U T S. Effect of Pb and Sb additions on the precipitation kinetics of AZ91 magnesium alloy [J]. Mater. Sci. Eng. A., 2006, 457(1): 275
doi: 10.1016/j.msea.2006.12.132
[6] Wang B J, Xu D K, Wang S D, et al. Recent progress in the research about fatigue crack initiation of Mg alloys under elastic stress amplitudes: A review [J]. Front. Mech. Eng., 2019, 14: 113
doi: 10.1007/s11465-018-0482-1
[7] Guo X T, Li P J, Liu S X, et al. Development status and prospect of heat resistant rare earth-magnesium alloy [J]. Foundry, 2002, 51(2): 68
[7] (郭旭涛, 李培杰, 刘树勋等.稀土耐热镁合金发展现状及展望 [J]. 铸造, 2002, 51(2): 68)
[8] Yuan G Y, Zhang W M, Sun Y S. Improvement of mechanical properties of Mg-Al based alloy by bismuth alloying [J]. J. Southeast Univ., 1999, 29(3): 115
[8] (袁广银, 张为民, 孙扬善. Mg-Al基合金加铋合金化对其力学性能的改善作用 [J]. 东南大学学报, 1999, 29(3): 115)
[9] Li K J, Li Q A, Xie J C, et al. Research and application of rare earth in heat resistant magnesium alloy [J]. Chin. Rare Earths, 2009, 30(3): 79
[9] (李克杰, 李全安, 谢建昌等. 稀土在耐热镁合金中的研究应用[J]. 稀土, 2009, 30(3): 79)
[10] Dong F, Liu Y, Guo S L, et al. Effects of Yttrium on microstructure and mechanical properties of AZ91D magnesium alloy [J]. Light Alloy Fab. Technol. 2018, 146(5): 63
[10] (董方, 刘月, 郭升乐等. 稀土元素Y对AZ91D镁合金显微组织和力学性能的影响 [J]. 轻合金加工技术, 2018, 146(5): 63)
[11] Li W W. Synergistic effects of Nd and Y on microstructure and properties of AZ31 magnesium alloy [D]. Tianjin: Tianjin University, 2013
[11] (李文文. Nd和Y复合添加对AZ31镁合金组织与性能的影响 [D]. 天津: 天津大学, 2013)
[12] Ren W L, Li Q A, Shi Y J, et al. Effect of Bismuth addition on the microstructure and mechanical properties of AZ81 magnesium Alloy [J]. Rare Metal. and Cemented Carbides, 2010, 38(3): 35
[12] (任文亮, 李全安, 石雅静等. Bi对AZ81镁合金组织和力学性能的影响 [J]. 稀有金属与硬质合金, 2010, 38(3): 35)
[13] Li T. Influence of Sm, Bi, Zn and casting process on microstructures and mechanical properties of Mg-6Al magnesium alloy [D]. Changsha: Central South University, 2013
[13] (李涛. Sm、Bi、Zn及压铸对Mg-6Al系镁合金组织和性能的影响 [D]. 长沙: 中南大学, 2013)
[14] Liu D. Effect of A1-Nd compound on the microstructure and mechanical properties of Mg-A1 magnesium alloys [D]. Chongqing: Chongqing University, 2018
[14] (刘丹. Al-Nd化合物对Mg-Al系镁合金显微组织和力学性能的影响 [D]. 重庆: 重庆大学, 2018)
[15] Bai Y Y, Wei R F, Dong F, et al. Effect of neodymium on the as-cast microstructure andmechanical properties of AZ31 magnesium alloy [J]. J. Mater. Metall., 2017, 16(1): 54
[15] (柏媛媛, 魏汝飞, 董方等. 稀土Nd对AZ31镁合金铸态组织和力学性能的影响 [J]. 材料与冶金学报, 2017, 16(1): 54)
[16] Wang J, Yang J, Wu Y, Zhang H, et al. Microstructures and mechanical properties of as-cast Mg-5Al-0.4Mn-xNd(x=0, 1, 2 and 4) alloys [J]. Mater. Sci. Eng. A, 2008, 472(1-2): 332
doi: 10.1016/j.msea.2007.03.036
[17] Cheng R J, Dong H W, Liu W J, et al. Effect of Al-and Ce-content on microstructure of Mg-Al magnesium alloys [J]. Chin. J. Mater. Res., 2017, 31(10): 738
[17] (程仁菊, 董含武, 刘文君等. Al和Ce的含量对Mg-Al合金组织的影响 [J]. 材料研究学报, 2017, 31(10): 738)
[18] Huang W X, Yan H. Calculation of thermodynamic parameters of Mg-Al-Y alloy [J]. J. Wuhan Univ. Technol., 2014, 29: 374
doi: 10.1007/s11595-014-0924-5
[19] Dai J H. Investigation on diffusion behaviors of alloy elements in magnesium [D]. Chongqing: Chongqing University, 2016
[19] (戴甲洪. 合金元素在镁合金中扩散行为的研究 [D]. 重庆: 重庆大学, 2016)
[20] Wang Y X, Fu J W, Yang Y S. Effect of Nd addition on microstructures and mechanical properties of AZ80 magnesium alloys [J]. Trans. Nonferr. Metal. Soc., 2012, 22(6): 1322
doi: 10.1016/S1003-6326(11)61321-6
[21] Qiu D, Zhang M X, Kelly P M. Crystallography of heterogeneous nucleation of Mg grains on Al2Y nucleation particles in an Mg-10%Y alloy [J]. Scr. Mater., 2009, 61(3): 312
doi: 10.1016/j.scriptamat.2009.04.011
[22] Easton M, Stjohn D. Grain refinement of aluminum alloys: Part I. the nucleant and solute paradigms-a review of the literature [J]. Metall. Mater. Trans. A, 1999, 30(6): 1613
doi: 10.1007/s11661-999-0098-5
[23] Zhou Y, Mao P L, Wang Z, et al. Investigations on hot tearing behavior of Mg-7Zn-xCu-0.6Zr alloys [J]. Acta Metall. Sin., 2017, 53: 851
doi: 10.11900/0412.1961.2016.00476
[23] (周野, 毛萍莉, 王志等. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究 [J]. 金属学报, 2017, 53: 851)
doi: 10.11900/0412.1961.2016.00476
[24] Zhang J, Zhang Z H. Magnesium Alloy and Its Application [M]. Beijing: Chemical Industry Press Mater., 2004:67
[24] (张津, 章宗和. 镁合金及应用 [M]. 北京: 化学工业出版社, 2004: 67)
[25] Yahia A, Dong Q, Jiang B, et al. Current research progress in grain refinement of cast magnesium alloys: A review article [J]. J. Alloy. Compd., 2015, 619: 639
doi: 10.1016/j.jallcom.2014.09.061
[26] Zhang J H, Wang J, Qiu X, et al. Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg-4Al-based alloy [J]. J. Alloy. Compd., 2008, 464(1-2): 556
doi: 10.1016/j.jallcom.2007.10.056
[27] Yang P, Hu Y S, Cui F E, et al. Texture investigation on the deformation mechanisms inmagnesium alloy AZ31 deformed at high temperatures [J]. Chin. J. Mater. Res., 2004, 18(1): 53
[27] (杨平, 胡轶嵩, 崔凤娥等. 镁合金AZ31高温形变机制的织构分析 [J]. 材料研究学报, 2004, 18(1): 53)
[28] Keyvani M, Nahmudi R, Nayyeri G. Effect of Bi, Sb and Ca additions on the hot hardness and microstructure of cast Mg-5Sn alloy [J]. Mater. Sci. Eng. A, 2010, 527(29-30): 7714
doi: 10.1016/j.msea.2010.08.045
[29] Zhou D W, Liu J S, Lu Y Z, et al. Mechanism of Sb, Bi alloying on improving heat resistance properties of Mg-Al alloy [J]. Trans. Nonferr. Metal. Soc., 2008, 18(1): 118
[29] (周惦武, 刘金水, 卢远志等. Sb、Bi合金化提高Mg-Al系合金抗蠕变性能的机理 [J]. 中国有色金属学报, 2008, 18(1): 118)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.