Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (5): 379-384    DOI: 10.11901/1005.3093.2019.265
  研究论文 本期目录 | 过刊浏览 |
超薄四面体非晶碳膜的结构和性能
许世鹏1,3, 王华1,3, 陈维铅1,3, 李玉宏1,3, 李玉军1(), 汪爱英2()
1.甘肃省太阳能发电系统工程重点实验室 酒泉职业技术学院 酒泉 735000
2.中国科学院海洋新材料与应用技术重点实验室 浙江省海洋材料与防护技术重点实验室;中国科学院宁波材料技术与工程研究所 宁波 315201
3.酒泉新能源研究院 酒泉 735000
Structure and Properties of Ultrathin Tetrahedral Amorphous Carbon Films
XU Shipeng1,3, WANG Hua1,3, CHEN Weiqian1,3, LI Yuhong1,3, LI Yujun1(), WANG Aiying2()
1.Jiuquan Vocational and Technical College, Gansu Key Laboratory of Solar Power Generation System Project, Jiuquan 735000, China
2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
3.Jiuquan New Energy Research Institute, Jiuquan 735000, China
引用本文:

许世鹏, 王华, 陈维铅, 李玉宏, 李玉军, 汪爱英. 超薄四面体非晶碳膜的结构和性能[J]. 材料研究学报, 2020, 34(5): 379-384.
Shipeng XU, Hua WANG, Weiqian CHEN, Yuhong LI, Yujun LI, Aiying WANG. Structure and Properties of Ultrathin Tetrahedral Amorphous Carbon Films[J]. Chinese Journal of Materials Research, 2020, 34(5): 379-384.

全文: PDF(1767 KB)   HTML
摘要: 

使用磁过滤阴极真空电弧(FCVA)技术制备不同厚度的超薄四面体非晶碳膜(ta-C),研究了表征和测量超薄ta-C碳膜微观结构和性能的方法以及膜厚的影响。使用X射线衍射仪验证椭圆偏振光谱仪联用分光光度计表征膜厚度的可靠性并测量了膜密度;用拉曼谱分析薄膜的内在结构,验证用椭偏联用分光光度计表征sp3 C含量的可靠性;用Stoneys公式计算了薄膜的残余应力。结果表明,薄膜的厚度由7.6 nm增大到33.0 nm其沉积速率变化不大,为1.7±0.1 nm/min;根据椭偏联用分光光度计的表征结果,薄膜中sp3 C的含量逐渐减少,拓扑无序度降低,与拉曼谱的表征结果一致;厚度为7.6 nm的超薄ta-C碳膜中p3 C的含量最高;随着厚度的增大薄膜中的残余压应力从14 GPa降低到5 GPa;厚度为11.0 nm的薄膜主体层密度最大,为3070 kg/m3,致密性较好;厚度对薄ta-C碳膜表面粗糙度的影响较小。用椭偏和分光光度计测量超薄ta-C碳膜的厚度和表征显微结构是可行的,X射线反射法可用于测量超薄ta-C碳膜密度和表面粗糙度,但是对薄膜的质量要求较高。

关键词 无机非金属材料膜厚表征ta-C    
Abstract

Ultrathin tetrahedral amorphous carbon (ta-C) films with different film thickness were prepared by filtered cathodic vacuum arc technique. The accurate measurement of the film thickness and sp3C content of the ultrathin ta-C films was conducted by means of ellipsometry combined with spectrophotometry. The acquired film thickness was further verified by XRD. The film density was acquired from the results of precise determination of lattice parameters. Raman spectroscopy were conducted to characterize the atomic bond structure of as-prepared film. The residual stress was calculated from the curvature of the film/substrate composite using Stoneys equation. Results show that as the film thickness increased from 7.6 to 33.0 nm there was no obvious change of the ultrathin ta-C film growth rate, which keeps constant as 1.7±0.1 nm/min, while the residual compressive stress and sp3 fraction decreased; for the film of thickness 7.6 nm the maximal sp3 fraction was obtained. The results are consistent with Raman's. For the film of thickness 11.0 nm, the maximal bulk layer density was 3070 kg/m3. The film thickness had no obvious influence on surface roughness of ultrathin ta-C films. In summary, ellipsometry combined with spectrophotometry is of feasible means for characterizing the structure and thickness of the ultrathin ta-C films. X-ray reflection can be used to measure the density and surface roughness of ultrathin ta-C carbon films of high quality.

Key wordsinorganic non-metallic materials    characterization    thickness    ta-C
收稿日期: 2019-05-22     
ZTFLH:  O484  
基金资助:国家自然科学基金(51772307);甘肃省科技创新服务平台专项(1505JTCF039);甘肃省高等学校科研项目(2019A-248);甘肃省高等学校科研项目(2020A-267)
作者简介: 许世鹏,男,1987年生,讲师
图1  薄膜厚度和沉积速率与沉积时间的关系
图2  不同厚度的超薄ta-C薄膜的反射率曲线
图3  椭偏和XRR测得的超薄ta-C碳膜厚度
图4  超薄ta-C碳膜的三层层状模型
Sample

Density

/kg·m-3

Thickness

/nm

Roughness

/nm

ASurf layer22052.0070.569
Bulk layer30423.5420.530
Interface layer23492.5522.662
BSurf layer20901.8280.439
Bulk layer30706.5470.656
Interface layer23222.3972.928
CSurf layer20252.2320.363
Bulk layer291712.9160.810
Interface layer21383.6301.806
DSurf layer18992.4140.475
Bulk layer286918.4740.374
Interface layer22115.1371.219
ESurf layer20702.6410.416
Bulk layer284129.9650.599
Interface layer26862.40000.904
表1  XRR测量超薄ta-C碳膜膜厚、密度以及表面粗糙度
图5  用XRR和SPM测量不同厚度超薄ta-C膜的表面粗糙度

Wavelength

/nm

Glass carbon for sp2 and diamond for sp3
190~1700
Time/min46101520
Thickness/nm7.611.017.524.033.0
sp3/sp24.5361.2550.9460.3390.334
sp3/%81.93655.64548.60525.30025.047
MSE1.9151.2323.2541.0291.172
表2  椭偏仪和分光光度计结合表征超薄ta-C碳膜厚度与sp3含量
图6  不同厚度薄膜的可见拉曼图谱、G峰位和色散值
图7  薄膜的残余压应力与膜厚的关系
[1] Casiraghi C, Robertson J, Ferrari A C. Diamond-like carbon for data and beer storage [J]. Mater. Today, 2007, 44: 10
[2] Liu P P, Li H C, Yang L, et al. Influence of annealing temperature on the metal-catalyzed crystallization of tetrahedral amorphous carbon to graphene [J]. Chin. J. Mater. Res., 2018, 32(5): 341
[2] (刘盼盼, 李汉超, 杨林等. 退火温度对金属催化四面体非晶碳转变为石墨烯过程的影响 [J]. 材料研究学报, 2018, 32(5): 341)
[3] Li X W, Zhou Y, Sun L L, et al. Determination of chemical bond of tetrahedral amorphous carbon films by ellipsometry approach [J]. Acta Opt. Sin., 2012, 32: 1003
[3] (李晓伟, 周毅, 孙丽丽等. 椭偏法表征四面体非晶碳薄膜的化学键结构 [J]. 光学学报, 2012, 32: 1003)
[4] Zhang C W. Preparation of tetrahedral amorphous carbon films by filtered cathode vacuum arc plasma deposition system [D]. Dalian: Dalian University of Technology, 2004
[4] (张成武. 磁过滤真空阴极弧等离子体制备四面体非晶碳膜 [D]. 大连: 大连理工大学, 2004)
[5] Han H, Ryan F, McClure M. Ultra-thin tetrahedral amorphous carbon film as slider overcoat for high areal density magnetic recording [J]. Surf. Coat. Technol., 1999, 120-121: 579
[6] Quinn J P, Lemoine P, Maguire P, et al. Ultra-thin tetrahedral amorphous carbon films with strong adhesion, as measured by nanoscratch testing [J]. Diamond Relat. Mater., 2004, 13: 1385
[7] Casiraghi C, Ferrari A C, Ohr R, et al. Surface properties of ultra-thin tetrahedral amorphous carbon films for magnetic storage technology [J]. Diamond Relat. Mater., 2004, 13: 1416
[8] Peiner E, TibrewaIa A, Bandorf R, et al. Diamond like carbon for MEMS [J]. J. Micromech. Microeng., 2007, 17: S83
[9] Lin H L, Shen Y J, Wang Z J, et al. Preparation and performance of polypropylene nano-composites toughened-reinforced synergetically with functionalized graphene and elastomer [J]. Chin. J. Mater. Res., 2016, 30(5): 393
[9] (蔺海兰, 申亚军, 王正君等. 功能化石墨烯/弹性体协同强韧化聚丙烯纳米复合材料的制备和性能研究 [J]. 材料研究学报, 2016, 30(5): 393)
[10] Yu J S, Lu Q, Xiao P, et al. X-ray reflection analysis on the thickness of films [J]. J. Funct. Mater., 2008, 39: 199
[10] (于吉顺, 陆琪, 肖平等. X射线反射(XRR)对薄膜样品厚度的研究 [J]. 功能材料, 2008, 39: 199)
[11] Li X W. Study of molecular simulation and dynamics growth of metal-incorporated diamond-like carbon films [D]. Ningbo: Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 2012
[11] (李晓伟. 金属掺杂类金刚石纳米复合膜的动力学生长及分子模拟研究 [D]. 宁波: 中国科学院宁波材料技术与工程研究所, 2012)
[12] Zhong M, Zhang C H, Luo J B. Effect of substrate morphology on the roughness evolution of ultra thin DLC films [J]. Appl. Surf. Sci., 2008, 254: 6742
[13] Ferrari A C, Robertson J. Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond [J]. Philos. Trans. Roy. Soc. Ser., 2004, 362A: 2477
[14] Ferrari A C, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon [J]. Phys. Bev., 2001, 64B: 075414
[15] Ager III J W, Anders S, Anders A, et al. Effect of intrinsic growth stress on the Raman spectra of vacuum-arc-deposited amorphous carbon films [J]. Appl. Phys. Lett., 1995, 66: 3444
[16] Stoney G G. The tension of metallic films deposited by electrolysis [J]. Proc. Roy. Soc. London Ser., 1909, 82A: 172
[17] Guo P, Li X W, Sun L L, et al. Stress reduction mechanism of diamond-like carbon films incorporated with different Cu contents [J]. Thin Solid Films, 2017, 640: 45
[18] Xu S P, Li X W, Huang M D, et al. Stress Reduction dependent on incident angles of carbon ions in ultrathin tetrahedral amorphous carbon films [J]. Appl. Phys. Lett., 2014, 104: 141908
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 张敏, 张思倩, 王栋, 陈立佳. 一种镍基单晶高温合金的蠕变组织损伤对再蠕变行为的影响[J]. 材料研究学报, 2023, 37(6): 417-422.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.