Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (8): 937-942    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECT OF PRE-DEFORMATION ON STACKING FAULT PROBABILITY AND DAMPING CAPACITY OF Fe-Mn ALLOY
HUANG Shuke 1;2; LIU Jianhui 1; LI Chang'an1; ZHOU Danchen1; LI Ning2; WEN Yuhua2
1. Institute of Mechanical Manufacturing Technology; China Academy of Engineering Physics; Mianyang 621900
2. School of Manufacturing Science and Engineering; Sichuan University; Chengdu 610065
Cite this article: 

HUANG Shuke LIU Jianhui LI Chang'an ZHOU Danchen LI Ning WEN Yuhua. EFFECT OF PRE-DEFORMATION ON STACKING FAULT PROBABILITY AND DAMPING CAPACITY OF Fe-Mn ALLOY. Acta Metall Sin, 2009, 45(8): 937-942.

Download:  PDF(1797KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe–Mn alloys have been widely applied to industrial facilities because of their good mechanical properties, high damping capacity at great strain amplitude and low cost. However, the damping mechanism of Fe–Mn alloys is not fully clear now. In this paper, the high damping mechanism of a Fe–Mn alloy and its effect of pre–deformation on damping capacity were studied by using G–L dislocation model and measuring stacking fault probability. The damping capacity was measured using reversal torsion pendulum. The stacking fault probability and volume fraction of  ε–martensite were determined by XRD and the microstructure was observed by SEM and TEM. The results show that the high damping mechanism can be described in terms of the breakaway movement of Shockley partial dislocations on stacking faults. Pre–deformation has little effect on the volume fraction of  ε–martensite, but it increases the stacking fault probability in γ–austenite and ε–martensite, so the damping capacity of Fe–Mn alloy is improved. With pre–deformation increasing (greater than 4%), however, the stacking faults and ε–martensite segment each other, so the breakaway movement of Shockley partial dislocations is difficult and the damping capacity of Fe–Mn alloy decreases gradually.

Key words:  damping alloy      Fe-Mn alloy      Shockley partial dislocation      stacking fault probability      pre-deformation     
Received:  28 November 2008     
ZTFLH: 

TG135.7

 
Fund: 

Supported by Program for New Century Excellent Talents in University (No.NCET–06–0793) and Key Project of Chinese Ministry of Education (No.107093)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I8/937

[1] Pulino–Sagradi D, Sagradi M, Karimi A, Martin J L. Scr Mater, 1998; 39: 131
[2] Wu S K, Lin H C. J Alloys Compd, 2003; 355: 72
[3] Liu Y C, Yang G C, Lu L L, Yang L S. J Mater Process Tecnol, 1999; 87: 53
[4] G¨oken J, Riehemann W. Mater Sci Eng, 2004; A370: 417
[5] Baik S H. Nucl Eng Des, 2000; 198: 241
[6] Jun J H, Choi C S. Mater Sci Eng, 1998; A252: 133
[7] Huang S K, Li N, Wen Y H, Teng J, Ding S. Mater Sci Eng, 2008; A479: 223
[8] Lee Y K, Jun J H, Choi C S. ISIJ Int, 1997; 37: 1023
[9] Huang S K, Li N, Wen Y H, Ding S, Teng J. Acta Metall Sin, 2007; 43: 807
(黄姝珂, 李宁, 文玉华, 丁 胜, 滕 劲. 金属学报, 2007; 43: 807)
[10] Jun J H, Choi C S. Metll Mater rans, 1999, 30A: 667
[11] Seo Y S, Lee Y K, Choi C S. Mater Trans, 2005, 46: 1274
[12] Lee Y K, Baik S H, Kim J C, Choi C S. J Alloys Compd, 2003; 355: 10
[13] Warren B E. X–Ray Diffraction. Massachusett Addison: Wesley, 1969: 275
[14] Ramous E. Z Metallkd, 1974; 65: 515
[15] He G, Zhao H B, Rong Y H, Guo Z H, Chen S P, Hsu T Y. J Shanghai Jiaotong Univ, 1999; 33: 765
(何刚, 赵恒北, 戎咏华, 郭正洪, 陈世朴, 徐祖耀. 上海交通大学学报,1999; 33: 765)
[16] Granato A, L¨ucke K. J Appl Phys, 1956; 27: 583
[17] Teutonico L J, Granato A V, L¨ucke K. J Appl Phys, 1964; 35: 220

[1] WANG Jinliang, WANG Chenchong, HUANG Minghao, HU Jun, XU Wei. The Effects and Mechanisms of Pre-Deformation with Low Strain on Temperature-Induced Martensitic Transformation[J]. 金属学报, 2021, 57(5): 575-585.
[2] WANG Shihong, LI Jian, CHAI Feng, LUO Xiaobing, YANG Caifu, SU Hang. Influence of Solution Temperature on γε Transformation and Damping Capacity of Fe-19Mn Alloy[J]. 金属学报, 2020, 56(9): 1217-1226.
[3] HAN Baoshuai, WEI Lijun, XU Yanjin, MA Xiaoguang, LIU Yafei, HOU Hongliang. Effect of Pre-Deformation on Microstructure and Mechanical Properties of Ultra-High Strength Al-Zn-Mg-Cu Alloy After Ageing Treatment[J]. 金属学报, 2020, 56(7): 1007-1014.
[4] Shixin XU, Wei YU, Shujia LI, Kun WANG, Qisong SUN. Effects of Pre-Deformation Temperature on Nanobainite Transformation Kinetics and Microstructure[J]. 金属学报, 2018, 54(8): 1113-1121.
[5] CUI Li, GUO Mingxing, PENG Xiangyang, ZHANG Yan, ZHANG Jishan, ZHUANG Linzhong. INFLUENCE OF PRE-DEFORMATION ON THE PRECIP- ITATION BEHAVIORS OF Al-Mg-Si-Cu ALLOY FOR AUTOMOTIVE APPLICATION[J]. 金属学报, 2015, 51(3): 289-297.
[6] CHAI Linjiang LUAN Baifeng CHEN Jianwei QIU Risheng LIU Qing. EFFECT OF PRE-DEFORMATION ON GRAINS AND PRECIPITATES OF Zr-Sn-Nb ALLOY DURING AGING[J]. 金属学报, 2012, 48(1): 107-114.
[7] Xu Yun-Wei; MA Tian-Yu; Mi YAN. MAGNETOSTRICTION IN ANTIFERROMAGNETIC Fe1-xMnx (0.30 ≤ x ≤ 0.55) ALLOYS[J]. 金属学报, 2008, 44(10): 1235-1237 .
[8] Shu-Ke Huang; LI Ning. Effect of deep-cooling and measurement temperature on damping capacity of Fe-Mn alloy[J]. 金属学报, 2007, 43(8): 807-812 .
[9] LI Renshun;CHEN Xiangping Harbin Institute of Technology Jianghan petroleum Institute Correspindent Post Box No.423; Harbin Institute of Technology; Harbin 150006. CORRELATION BETWEEN MICROSTRUCTURE AND STRESS CORROSION CRACKING SUSCEPTIBILITY OF 2091 ALLOY[J]. 金属学报, 1992, 28(6): 59-64.
[10] TAN Yanchang;ZHAO Yuhua;WEI Suning Northeast University of Technology; Shenyang. EFFECT OF TEMPERING ON SHEAR MODULUS OF Fe-Mn BASE ALLOYS[J]. 金属学报, 1991, 27(4): 30-33.
[11] YANG Minjie;CHEN Bingzhao Shanghai Institute of Metallurgy; Academia Sinica. SEPARATION AND CONCENTRATION OF Kr AND Xe FROM HYDROGEN USING TiFe_(0.86)Mn_(0.1) ALLOY[J]. 金属学报, 1988, 24(2): 194-198.
No Suggested Reading articles found!