Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (4): 476-484    DOI:
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF LIQUID STEEL SUPERHEAT REMOVAL IN SLAB CONTINUOUS CASTING MOLD
YU Haiqi; ZHU Miaoyong
School of Materials and Metallurgy; Northeastern University; Shenyang 110004
Cite this article: 

YU Haiqi ZHU Miaoyong. NUMERICAL SIMULATION OF LIQUID STEEL SUPERHEAT REMOVAL IN SLAB CONTINUOUS CASTING MOLD. Acta Metall Sin, 2009, 45(4): 476-484.

Download:  PDF(5645KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mathematical model was developed to study the 3D temperature distribution and heat transfer from superheated liquid steel to the inside of the solidifying shell in the slab continuous casting mold. The effects of some factors, such as submergence depth and port angle of submerged entry nozzle (SEN), mold width, casting speed, superheat temperature, argon gas injection, electromagnetic brake (EMBr) and also including the argon gas flow rate and current intensity etc., on the temperature distribution and heat transfer of superheated liquid steel in the mold were analyzed. The results indicate that the maximum heat input to the solidifying shell forefront occurs near the impingement point of liquid steel on the narrow face of mold, and the most superheat of superheated liquid steel is dissipated near the impingement zone. Heat flux of superheated liquid steel delivered to the shell  surface increases in direct proportion to the casting speed and superheat temperature, respectively. Argon gas injection leads to a substantial increase in superheat flux to the impingement zone of narrow face and the upper region of wide face. EMBr is beneficial in increasing the temperature of upper region of the mold, but has no obvious effect on the heat flux distribution. The double action of argon gas injection and EMBr also produces an increase in heat flux to the upper region of wide face, which has no visible influence for the hat flux distribution of impingement zone.

Key words:  slab mold      temperature      heat transfer      argon gas injection      electromagnetic brake      numerical simulation     
Received:  30 July 2008     
ZTFLH: 

TF777.1

 
Fund: 

Supported by National Natural Science Foundation of China and Bao Steel Co. (No.50674020) and Program for New Century Excellent Talents in University (No.NCET–04–0285)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I4/476

[1] Zhu Z Y, Wang X H, Wang W J. Iron Steel Res, 2000; 115(4): 51
(朱志远, 王新华, 王万军. 钢铁研究, 2000; 115(4): 51)
[2] Lait J E, Brimacombe J K, Weinberg F. Ironmaking Steel making, 1974; 2: 90
[3] Lally B, Biegler L, Henein H. Metall Trans, 1990; 21B: 761
[4] Yang B J, Su J Y. Iron Steel, 1996; 31(9): 24
(杨秉俭, 苏俊义. 钢铁, 1996; 31(9): 24)
[5] Savage J, Pritchard W H. J Iron Steel Inst, 1954; 178: 269
[6] Savage J. J Iron Steel Inst, 1962; 200: 41
[7] Flint P J. 73th Steelmaking Conf, Warrendale, PA: Iron and Steel Society, 1990: 481
[8] Davies R, Blake N, Campell P. Proceeding of the 4th International Conference of Continuous Casting, Brussels, D¨usseldorf: Verlag Stahleisen, 1988: 645
[9] Huang X, Thomas B G, Najjar F M. Metall Trans, 1992; 23B: 339
[10] Thomas B G, Huang X. 76th Steelmakng Conf, Warrendale, PA: Iron and Steel Society, 1993: 273
[11] Zhang J M, Wang L F, Wang X H, Zhang L, Tang H B. Acta Metall Sin, 2003; 39: 1281
(张炯明, 王立峰, 王新华, 张 立, 唐海波. 金属学报, 2003; 39: 1281)
[12] Li Z Y, Zhao J Z. Acta Metall Sin, 2006; 42: 211
(李中原, 赵九洲. 金属学报, 2006; 42: 211)
[13] Li D H, Qiu Y Q, Liu X H, Wang G D. Foundry Technol, 2004; 25: 529
(李东辉, 邱以清, 刘相华, 王国栋. 铸造技术, 2004; 25: 529)
[14] Gong T, Yang H X, Deng K. Chin J Comput Phys, 2000; 17: 690
(龚 涛, 杨海西, 邓 康. 计算物理, 2000; 17: 690)
[15] Choudhary S K, Mazumdar D, Ghosh A. ISIJ Int, 1993; 33: 764
[16] Shamsi M R R I, Ajmani S K. ISIJ Int, 2007; 47: 433
[17] Yang H L, Zhao L G, Zhang X Z, Deng K W, Li W C, Gan Y. Metall Mater Trans, 1998; 29B: 1345
[18] Yu H Q, Zhu M Y. Acta Metall Sin, 2008; 44: 619
(于海岐, 朱苗勇. 金属学报, 2008; 44: 619)

[1] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[5] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[6] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[7] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[8] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[9] CHENG Yuanyao, ZHAO Gang, XU Deming, MAO Xinping, LI Guangqiang. Effect of Austenitizing Temperature on Microstructures and Mechanical Properties of Si-Mn Hot-Rolled Plate After Quenching and Partitioning Treatment[J]. 金属学报, 2023, 59(3): 413-423.
[10] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[11] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[12] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[13] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[14] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[15] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
No Suggested Reading articles found!