Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (7): 537-542    DOI: 10.11901/1005.3093.2019.090
ARTICLES Current Issue | Archive | Adv Search |
Effect of C Addition on Microstructure and Mechanical Properties of Ti-V-Cr Burn Resistant Titanium Alloys
Huanying SUN1(),Jun ZHAO1,Yi'an LIU1,Quan ZHANG1,Jingxia CAO2,Xu HUANG2
1. North China Institute of Aerospace Engineering, Langfang 065000, China
2. Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

Huanying SUN,Jun ZHAO,Yi'an LIU,Quan ZHANG,Jingxia CAO,Xu HUANG. Effect of C Addition on Microstructure and Mechanical Properties of Ti-V-Cr Burn Resistant Titanium Alloys. Chinese Journal of Materials Research, 2019, 33(7): 537-542.

Download:  HTML  PDF(13768KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The ingots with 120 mm diameter of burn resistant Ti-alloys with nominal composition of Ti-35V-15Cr, Ti-35V-15Cr-0.075C and Ti-35V-15Cr-0.15C were produced by vacuum arc consumable smelting. These ingots were deformed into bars with 25 mm diameter by sheathed extrusion. The microstructures of the ingots and extruded bars of burn resistant Ti-alloys were investigated. The tensile property, thermal stability and creep properties of the extruded bars of burn resistant Ti-alloys were tested under different conditions. The results show that burn resistant Ti-alloys with C addition have better ductility in tensile test due to refined grain size resulted from the sheathed extrusion process. Carbide can act as a stable sink for dissolved oxygen in the matrix, to improve the tensile ductility of the alloy even after hot exposure. In sum, the moderate C addition can improve the creep properties of burn resistant Ti-alloys.

Key words:  metallic materials      burn resistant titanium alloy      carbide      microstructure      mechanical properties     
Received:  31 January 2019     
ZTFLH:  TG146.2  
Fund: Key Projects of Hebei Educational Committee(ZD2018239);Langfang Science and Technology Project(2018011047);Foundation of North China Institute of Aerospace Engineering(ZD-2016-03)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.090     OR     https://www.cjmr.org/EN/Y2019/V33/I7/537

Fig.1  Microstructures of ingots of burn resistant titanium alloys with different C addition: (a) Ti-35V-15Cr, (b) Ti-35V-15Cr-0.075C, (c) Ti-35V-15Cr-0.15C
Fig.2  Position of line in EDX analysis
Fig.3  Distribution curve of elementary compositions in the experimental alloy by EDX analysis (a) Ti, (b) V, (c) Cr, (d) C
Fig.4  Microstructures of extrusion bars of burn resistant titanium alloys with different C addition (a) Ti-35V-15Cr, (b) Ti-35V-15Cr-0.075C, (c) Ti-35V-15Cr-0.15C
Alloysσb/MPaδ5/%ψ/%σp0.2/MPa
Ti-35V-15Cr104210151028
Ti-35V-15Cr-0.075C107118.4331005
Ti-35V-15Cr-0.15C10342138.1952
Table 1  Room temperature tensile properties of alloys with different C addition
Fig.5  SEM fractographs of room temperature tensile samples of alloys with different C addition: (a) 0%, (b) 0.075%, (c) 0.15%
Alloysσb/MPaδ5/%ψ/%σp0.2/MPa
Ti-35V-15Cr86017.640.2711
Ti-35V-15Cr-0.075C8542046.6688
Ti-35V-15Cr-0.15C84622.943.3686
Table 2  550℃ temperature tensile properties of alloys with different C addition
Fig.6  SEM fractographs of 550℃ tensile samples of alloys with different C addition (a) 0%, (b) 0.075%, (c) 0.15%
Alloysσb/MPaδ5/%δ5dψ/%ψdσp0.2/MPa
Ti-35V-15Cr9861.783%3.676%978
Ti-35V-15Cr-0.075C10011235%29.710%945
Ti-35V-15Cr-0.15C97016.024%28.425%915
Table 3  Room temperature tensile properties of alloys with different C addition exposed at 550℃ for 100 h
Fig.7  SEM fractographs of room temperature tensile samples exposed at 550℃ for 100 h of alloys with different C addition (a) 0%, (b) 0.075%, (c) 0.15%
[1] Cao J X, Huang X, Mi G B, et al. Research progress on application technique of Ti-V-Cr burn resistant titanium alloys [J]. J. Aeronaut. Mater., 2014, 34(4): 92
[1] (曹京霞, 黄 旭, 弥光宝等. Ti-V-Cr系阻燃钛合金应用研究进展 [J]. 航空材料学报, 2014, 34(4): 92)
[2] Hansen J O, Sound H, Novotnak D, et al. Heat treatment to reduce embrittlement of titanium alloys [P]. US Paten: 5397404, 1995
[3] Seagle S R. The state of the USA titanium industry in 1995 [J]. Mater. Sci. Eng. A, 1996, 213: 1
[4] Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng. A, 1996, 213: 103
[5] Mi G B, Huang X, Cao J X, et al. Microstructure characteristics of burning products of Ti-V-Cr type fireproof titanium alloy by frictional ignition [J]. Acta. Phys. Sin., 2016, 65(5): 056103
[5] (弥光宝, 黄 旭, 曹京霞等. 摩擦点火Ti-V-Cr系阻燃钛合金燃烧产物的组织特征 [J]. 物理学报, 2016, 65(5): 056103)
[6] Mi G B, Huang X, Cao J X, et al. Frictional ignition of Ti40 fireproof titanium alloys for aero-engine in oxygen-containing media [J]. Trans. Nonferrous Met. Soc. China., 2013, 23: 2270
[7] Sun H Y, Cao J X, Wang B, et al. Optimization of hot deformation parameters of burn resistant titanium alloy by using processing map [J]. Rare. Metal. Mat. Eng., 2013, 42(11): 2351
[7] (孙欢迎, 曹京霞, 王 宝等. 应用加工图技术优化阻燃钛合金高温变形工艺 [J]. 稀有金属材料与工程, 2013, 42(11): 2351)
[8] Lu S Q, Ouyang D L, Cui X, et al. Dynamic recrystallization behavior of burn resistant titanium alloy Ti-25V-15Cr-0.2Si [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1003
[9] Sun H Y, Liu Y A, Zhao J, et al. Hot deformation behavior and mechanism of as-extruded burn resistant titanium alloy [J]. Chin. J. Nonferrous. Met., 2017, 27(6): 1162
[9] (孙欢迎, 刘翊安, 赵 军等. 挤压态阻燃钛合金高温变形行为及机理 [J]. 中国有色金属学报, 2017, 27(6): 1162)
[10] Lai Y J, Zhiang P X, Wang K X, et al. A comparative study about microstructure and mechanical properties of Ti-V-Cr type burn-resistant titanium alloys slabs [J]. Mater. Rev. B, 2016, 30(10): 57
[10] (赖运金, 张平祥, 王凯旋等. Ti-V-Cr系阻燃钛合金厚板组织与力学性能对比研究 [J]. 材料导报B: 研究篇, 2016, 30(10): 57)
[11] Zhu Y C, Zeng W D, Peng W W, et al. Cracking behavior of Ti40 titanium alloy in hot compression [J]. Rare. Metal. Mat. Eng., 2013, 42(10): 2088
[11] (朱艳春, 曾卫东, 彭雯雯等. Ti40合金热压缩变形过程的开裂行为研究 [J]. 稀有金属材料与工程, 2013, 42(10): 2088)
[12] Lei L M. Microstructure and mechanical properties of non-burning titanium alloy with lower cost [D]. Beijing: Beijing Institute of Aeronautical Materials, 2002
[12] (雷力明. 低成本阻燃钛合金微观组织和力学性能研究 [D]. 北京: 北京航空材料研究院, 2002)
[13] Lei L M, Huang X, Wu X R, et al. Effects of second phases on tensile fracture behavior of Ti-25V-15Cr-2Al-0.2C-x alloys [J]. Rare Metals, 2004, 28(1): 47
[13] (雷力明, 黄 旭, 吴学仁等. 第二相对Ti-25V-15Cr-2Al-0.2C-x合金拉伸断裂行为的影响 [J]. 稀有金属, 2004, 28(1): 47)
[14] Zhao H X, Huang X, Wang B, et al. Effect of heat-treatment on the microstructure and thermal stability properties of Ti-35V-15Cr-0.15Si-0.05C titanium alloy [J]. J. Mater. Eng., 2013, (7): 73
[14] (赵红霞, 黄 旭, 王 宝等. 热处理对Ti-35V-15Cr-0.15Si-0.05C合金热稳定性能的影响 [J]. 材料工程, 2013, (7): 73)
[15] Lei L M, Huang X, Sun F S, et al. Study of the creep deformation structure in Ti-25V-15Cr-2Al-2Mo-0.2C non-burning β titanium alloy [J]. Rare. Metal. Mat. Eng., 2004, 33(5): 498
[15] (雷力明, 黄 旭, 孙福生等. Ti-25V-15Cr-2Al-2Mo-0.2C阻燃β钛合金的蠕变变形结构研究 [J]. 稀有金属材料与工程, 2004, 33(5): 498)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!