Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (7): 515-522    DOI: 10.11901/1005.3093.2018.588
ARTICLES Current Issue | Archive | Adv Search |
Fabrication and Photocatalytic Properties of Ce-La-Ag Co-doped TiO2/Basalt Fiber Composite Photocatalyst
Zishang CHEN1,Xiaoping LIANG1(),Xiaowei FAN1,Jun WANG1,Anding HUANG1,Zhifeng LIU2()
1. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
2. School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China
Cite this article: 

Zishang CHEN,Xiaoping LIANG,Xiaowei FAN,Jun WANG,Anding HUANG,Zhifeng LIU. Fabrication and Photocatalytic Properties of Ce-La-Ag Co-doped TiO2/Basalt Fiber Composite Photocatalyst. Chinese Journal of Materials Research, 2019, 33(7): 515-522.

Download:  HTML  PDF(8766KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composite photocatalyst of Ce-La-Ag-TiO2/BF (basalt fiber) was prepared by coating the Ce-La-Ag co-doped TiO2 onto BF via sol-gel method. The effect of the calcination temperature of the composite photocatalyst and the pH value of wastewater on the photocatalytic activity of these photocatalysts was evaluated by examining the degradation rate of ammonia-nitrogen wastewater. The results show that the coupling effect of Ce-La ion and Ag nanoparticles results in the decreases of the band gap of TiO2 from 3.2 eV to 2.15 eV, with a photocatalytic activity obviously higher than those of the pure TiO2, Ce-La-TiO2 and Ag-TiO2. Moreover, the catalytic activity of Ce-La-Ag-TiO2 is further improved after being deposited onto BF. When the calcination temperature for the Ce-La-Ag-TiO2, pH of wastewater and irradiating time of simulate visible light are 600oC, 10.5 and 360 min, respectively, the resulted degradation rate of ammonia nitrogen wastewater can still reach above 88.2% after repeated use of the composite photocatalyst for five times.

Key words:  Inorganic non-metallic materials      TiO2 composite photocatalyst      rare earth and noble metal co-doped      basalt fiber      ammonia nitrogen wastewater degradation     
Received:  27 September 2018     
ZTFLH:  O643.36  
  O644.1  
Fund: Program for Innovative Research Team in University of Ministry of Education of China(IRT-17R80);the Funds for Creative Research Groups of Tianjin(17JCJQJC44800)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.588     OR     https://www.cjmr.org/EN/Y2019/V33/I7/515

Fig.1  XRD patterns of the photocatalysts
Fig.2  XPS patterns of Ce-La-Ag-TiO2 photocatalysts (a) survey spectra, (b) Ag3d, (c) Ce3d, (d) La3d
Fig.3  UV-visible absorption spectra (a) and the band gap energy (b) of photocatalysts (1) Pure TiO2, (2) Ag-TiO2, (3) Ce-La-TiO2, (4) Ce-La-Ag-TiO2
Fig.4  Ammonia nitrogen degradation efficiency of all the prepared the photocatalysts
Fig.5  SEM and TEM images of the substrate (a) and photocatalysts (b, c)
Fig.6  Ammonia nitrogen concentration for Ce-La-Ag-TiO2/BF at different sintering temperatures (a) and different wastewater pH values (b)
Fig.7  Recycling test of Ce-La-Ag-TiO2/BF for photocatalytic degradation of Ammonia nitrogen
Fig.8  Transient photocurrent response of different photocatalysts
Fig.9  Electrochemical impedance spectroscopy of different photocatalyst
Fig.10  Reaction mechanism of photocatalytic degradation of ammonia nitrogen by Ce-La-Ag-TiO2/BF
Fig.11  Concentration curves of the NH4+-N and degradation products during the process by Ce-La-Ag-TiO2/BF
[1] Zangeneh H, Zinatizadeh A A L, Habibi M, et al. Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: a comparative review [J]. J. Ind. Eng. Chem., 2015, 26: 1
[2] Wang L J, Wang W Z, Chen Y L, et al. Heterogeneous p-n Junction CdS/Cu2O nanorod arrays: synthesis and superior visible-light-driven photoelectrochemical performance for hydrogen evolution [J]. ACS Appl. Mater. Interfaces, 2018, 10: 11652
[3] Vaquero F, Navarro R M, Fierro J L G. Influence of the solvent on the structure, morphology and performance for H2 evolution of cds photocatalysts prepared by solvothermal method [J]. Appl. Catal., 2017, 203B: 753
[4] Chen Y L, Wang L J, Wang W Z, et al. Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core-shell nanowire arrays fabricated by ion-replacement method [J]. Appl. Catal., 2017, 209B: 110
[5] Chen Y L, Wang L J, Wang W Z, et al. Synthesis of Se-doped ZnO nanoplates with enhanced photoelectrochemical and photocatalytic properties [J]. Mater. Chem. Phys., 2017, 199: 416
[6] Wang L J, Wang W Z, Zhang W W, et al. Superior photoelectrochemical properties of BiVO4 nanofilms enhanced by PbS quantum dots decoration [J]. Appl. Surf. Sci., 2018, 427: 553
[7] Pan J H, Dou H Q, Xiong Z G, et al. Porous photocatalysts for advanced water purifications [J]. J. Mate. Chem., 2010, 20: 4512
[8] Fujishima A, Zhang X T, Tryk D A. Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup [J]. Int. J. Hydrogen Energy, 2007, 32: 2664
[9] Luo X P, Chen C F, Yang J, et al. Characterization of La/Fe/TiO2 and its photocatalytic performance in ammonia nitrogen wastewater [J]. Int. J. Environ. Res. Public Health, 2015, 12: 14626
[10] Zhang X J, Chen W B, Lin Z D, et al. Preparation and photocatalysis performances of bacterial cellulose/TiO2 composite membranes doped by rare earth elements [J]. Chin. J. Mater. Res., 2010, 24: 540
[10] (张秀菊, 陈文彬, 林志丹等. 细菌纤维素负载稀土掺杂二氧化钛复合膜的制备和光催化性能 [J]. 材料研究学报, 2010, 24: 540)
[11] Chen H Y, He F, Zhang X H, et al. Photocatalytic reduction properties of palladium and nitrogen co-doped TiO2 thin films [J]. Chin. J. Mater. Res., 2017, 31: 255
[11] (陈海洋, 何菲, 张旭海等. 钯氮共掺杂TiO2薄膜的光催化还原性能 [J]. 材料研究学报, 2017, 31: 255)
[12] Wang F L, Wang Y F, Feng Y P, et al. Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen [J]. Appl. Catal., 2018, 221B: 510
[13] Zhang N, Fu X Z, Xu Y J. A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst [J]. J. Mater. Chem., 2011, 21: 8152
[14] Li D D, Liu Z Q, Liu X, et al. Silver doped TiO2 nanotube arrays: preparation and photoelectric catalysis degradation of ammonia nitrogen wastewater [J]. Chin. J. Inorg. Chem., 2012, 28: 1343
[14] (李丹丹, 刘中清, 刘旭等. Ag掺杂TiO2纳米管阵列的制备及光电催化降解氨氮废水 [J]. 无机化学学报, 2012, 28: 1343)
[15] Sun D C, Sun W Z, Yang W Y, et al. Efficient photocatalytic removal of aqueous NH4+-NH3 by palladium-modified nitrogen-doped titanium oxide nanoparticles under visible light illumination, even in weak alkaline solutions [J]. Chem. Eng. J., 2015, 264: 728
[16] Zendehzaban M, Sharifnia S, Hosseini S N. Photocatalytic degradation of ammonia by light expanded clay aggregate (LECA)-coating of TiO2 nanoparticles [J]. Korean J. Chem. Eng., 2013, 30: 574
[17] Shavisi Y, Sharifnia S, Hosseini S N, et al. Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater [J]. J. Ind. Eng. Chem., 2014, 20: 278
[18] Sim J, Park C, Moon D Y. Characteristics of basalt fiber as a strengthening material for concrete structures [J]. Composites, 2005, 36B: 504
[19] Liu Q, Shaw M T, Parnas R S, et al. Investigation of basalt fiber composite aging behavior for applications in transportation [J]. Polym. Compos., 2006, 27: 475
[20] Wu R H. The application of basalt fiber in building materials [J]. Adv. Mater. Res., 2012, 450-451: 499
[21] Zhang W, Tang W Y, Pu Y C, et al. Ultimate strength analysis of ship hulls of continuous basalt fiber composite materials [J]. Adv. Mater. Res., 2011, 150-151: 736
[22] Stephens M A, Petersen E L, Carro R, et al. Multi‐parameter study of nanoscale TiO2 and CeO2 additives in composite AP/HTPB solid propellants [J]. Propell. Explos. Pyrot., 2010, 35: 143
[23] Yuan S, Sheng Q R, Zhang J L, et al. Synthesis of thermally stable mesoporous TiO2 and investigation of its photocatalytic activity [J]. Microporous Mesoporous Mater., 2008, 110: 501
[24] Sibu C P, Kumar S R, Mukundan P, et al. Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide [J]. Chem. Mater., 2002, 14: 2876
[25] Khatun N, Rini E G, Shirage P, et al. Effect of lattice distortion on bandgap decrement due to vanadium substitution in TiO2 nanoparticles [J]. Mater. Sci. Semicond. Process., 2016, 50: 7
[26] Zhang H, Wang G, Chen D, et al. Tuning photoelectrochemical performances of Ag-TiO2 nanocomposites via reduction/oxidation of Ag [J]. Chem. Mater., 2008, 20: 6543
[27] Wang H L, Liu X H. Preparation of silver nanoparticle loaded mesoporous TiO2 and its photocatalytic property [J]. J. Inorg. Mater., 2016, 31: 555
[27] (王慧蕾, 刘孝恒. 银粒子修饰下的介孔二氧化钛的制备及其光催化性能的研究 [J]. 无机材料学报, 2016, 31: 555
[28] Chang J L, Ma Q L, Ma J C, et al. Synthesis of Fe3O4 nanowire@CeO2/Ag nanocomposites with enhanced photocatalytic activity under sunlight exposure [J]. Ceram. Int., 2016, 42: 11827
[29] Anandan S, Ikuma Y, Murugesan V. Highly active rare-earth-metal La-doped photocatalysts: fabrication, characterization, and their photocatalytic activity [J]. Int. J. Photoenergy, 2012, 2012: 921412
[30] Liu D D, Wu Z S, Tian F, et al. Synthesis of N and La co-doped TiO2/AC photocatalyst by microwave irradiation for the photocatalytic degradation of naphthalene [J]. J. Alloys Compd., 2016, 676: 489
[31] Liang Y H, Lin S L, Liu L, et al. Oil-in-water self-assembled Ag@AgCl QDs sensitized Bi2WO6: enhanced photocatalytic degradation under visible light irradiation [J]. Appl. Catal., 2015, 164B: 192
[32] Pandian A, Vairavan M, Jebbas W J, et al. Effect of moisture absorption behavior on mechanical properties of basalt fibre reinforced polymer matrix composites [J]. J. Compos., 2014, 2014: 587980
[33] Cheng J Y, Chen J, Lin W, et al. Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size [J]. Appl. Surf. Sci., 2015, 332: 573
[34] Yu L Q, He J D, Huang C X, et al. Electron transportation path build for superior photoelectrochemical performance of Ag3PO4/TiO2 [J]. RSC Adv., 2017, 7: 54485
[35] Wang J, Liang X P, Chen P, et al. Microstructure and photocatalytic properties of Ag/Ce4+/La3+ co-modified TiO2/Basalt fiber for ammonia-nitrogen removal from synthetic wastewater [J]. J. Sol-Gel Sci. Technol., 2016, 82: 289
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!