Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (7): 497-504    DOI: 10.11901/1005.3093.2018.677
ARTICLES Current Issue | Archive | Adv Search |
Creep Properties of Pre-deformed F316 Stainless Steel
Dongying WANG1,Liyi WANG2,Xin FENG3,Bin ZHANG3,Xingping YONG1,Guangping ZHANG2()
1. Shenyang Blower Works Group Corporation, Shenyang 110869, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

Dongying WANG,Liyi WANG,Xin FENG,Bin ZHANG,Xingping YONG,Guangping ZHANG. Creep Properties of Pre-deformed F316 Stainless Steel. Chinese Journal of Materials Research, 2019, 33(7): 497-504.

Download:  HTML  PDF(15585KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Creep properties of the pre-deformed F316 stainless steel by 200 MPa at 650℃, 670℃ and 700℃ were investigated. Results show that by a constant tensile stress of 200 MPa, the time to rupture of the pre-deformed F316 stainless steel decreases, while the steady creep rate and the instantaneous creep strain increase with increasing creep temperature. Ductile fracture is the dominant rupture mode for the pre-deformed F316 stainless steel. Creep cavities are mainly located in the triple junctions of grain boundaries, and the average diameter and the area ratio of the voids decrease in the location with the increasing distance to the fracture surface. In the region with the same distance to the fracture surface, the average diameter and area percentage of the voids increase obviously with the increasing creep temperature. The present pre-deformed F316 stainless steel with high density of twins has a better creep resistance than that of non-pre-deformed ones. Time to rupture by 200 MPa at 350℃ was estimated by using the Larson-Miller and θ-projection methods, respectively. The results show that the θ-projection method can give a better correlation. Besides, the long-term creep reliability of the F316 stainless steel served by 200 MP at 350℃ was discussed based on the Larson-Miller and θ-projection methods.

Key words:  metallic materials      F316,austenite stainless steel      creep properties      Larson-Miller parameter method      θ-projection method     
Received:  27 November 2018     
ZTFLH:  TG142.71  
  TG111.8  
Fund: National Science and Technology Major Project of China(2013ZX06002-002);National Natural Science Foundation of China(51771207);National Natural Science Foundation of China(51671050)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.677     OR     https://www.cjmr.org/EN/Y2019/V33/I7/497

Fig.1  Microstructure images of as-received pre-deformed F316 stainless steel (a) LSCM (b) EBSD, and (c) TEM
Fig.2  Creep strain (a) and creep rate as a function of creep times (b) of pre-deformed F316 stainless steel under 200 MPa at 650℃, 680℃ and 700℃, respectively
Sample numberTemperature/℃

Stress

/MPa

Time to rupture

/h

Initial

/%

Creep strain

/%

Minimum creep

rate/h-1

1#650200767.7670.1489.0302.285×10-5
2#680200148.2400.17014.8402.538×10-4
3#70020050.8160.19028.6309.840×10-4
Table 1  Creep properties of pre-deformed F316 stainless steel under 200 MPa at 650℃, 680℃, and 700℃
Fig.3  SEM images of fractures of the creep ruptured samples under 200 MPa at temperatures of (a-c) 650℃, (b-f) 680℃, and (g-i) 700℃
Fig.4  Optical microscope observation on microstructures of creep fractured samples under 200 MPa at temperatures of (a-b) 650℃, (c-d) 680℃ and (e-f) 700℃, respectively; (a), (c) and (e) cross-section images; (b), (d) and (f) longitudinal-section images
Fig.5  Comparison of pre-deformed and non-preformed creep property of F316 stainless steels
Fig.6  TEM images of microstructures of creep ruptured samples under 200 MPa at temperatures of 650℃ (a), 680℃ (b) and 700℃ (c)
Temperature/Kθ1θ2θ3θ4
923(650℃)2.9808×10-13.5025×10-23.4337×10-13.5162×10-3
973(700℃)1.5569×10-11.33361.8128×10-14.3043×10-2
Table 2  The θi parameters obtained by fitting at two different temperatures
ii=1i=2i=3i=4
Ai4.6813-3.0634×101-1.3803×101-2.2535×10
Bi-5.6414×10-33.1613×10-21.4452×10-22.1756×10-2
Table 3  The Ai and Bi parameters under load of 200 MPa
θ1θ2θ3θ4
2.0188×10-13.1101×10-19.3178×10-11.5804×10-2
Table 4  Predicted θi parameters under 200 MPa at 680℃
θ1θ2θ3θ4
0.14681×1021.1500×10-111.5857×10-51.0500×10-9
Table 5  Predicted θi parameters under 200 MPa at 350℃
Fig.7  Comparison of predicted curves via θ parameter method and actual creep under 200 MPa at temperatures of (a) 680℃, (b) 350℃
[1] Allen T, Busby J, Meyer M, et al. Materials challenges for nuclear systems [J]. Mater. Today, 2010, 13(12): 14
[2] Zinklea S J. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61(3): 735
[3] HelmutWolf, Mathew M D, Mannan S L, et al. Prediction of creep parameters of type 316 stainless steel under service conditions using the π-projection concept [J]. Mater. Sci. Eng., 1992, 159(2): 199
[4] Xu H. Analysis of high temperature creep relaxation of bolted joint [J]. Lubr. Eng., 2013
[5] Wright J K, Lillo T M, Wright R N, et al. Creep and creep-rupture of Alloy 617 [J]. Nucl. Eng. Des., 2018, 329: 142
[6] Yang W Y, Li Z W. Prediction of remaining life of 12Cr1MoV steel for main steam pipe material by θ method [J]. Acta Metall. Sin., 1999(7): 721
[6] (杨王玥, 李志文. θ法预测12Cr1MoV钢主蒸汽管道材料剩余寿命 [J]. 金属学报, 1999(7): 721)
[7] An Z L, Xuan F Z, Tu S D. High temperature creep performance of 316L stainless steel for diffusion welded joint [J]. Pressure vessel Technology, 2011, 28(7): 6
[7] (安子良, 轩福贞, 涂善东. 316L不锈钢扩散焊接头高温蠕变性能 [J]. 压力容器, 2011, 28(7): 6)
[8] Yoda Y, Toshinori Y, Nobuhiro T. Plastic deformation and creep damage evaluations of type 316 austenitic stainless steels by EBSD [J]. Mater. Charact. , 2010, 61(10): 913
[9] Kumar J G, Laha K. Small punch creep deformation and rupture behavior of 316L(N) stainless steel [J]. Mater. Sci. Eng., A, 2015, 641: 315
[10] Whittaker M T, Evans M, Wilshire B. Long-term creep data prediction for type 316H stainless steel [J]. Mater. Sci. Eng., A, 2012, 552: 145
[11] Turski M, Bouchard P J, Steuwer A, et al. Residual stress driven creep cracking in AISI Type 316 stainless steel [J]. Acta Mater., 2008, 56(14): 3598
[12] Lovell A J, Chin B A, Gilbert E R. In-reactor creep-rupture of 20-percent of cold-worked AISI 316 stainless steel [J]. J. Mater. Sci., 1981, 16(4): 870
[13] John Paul Foster, KermitBunde, Robert Gilbert E. Stress state dependence of transient irradiation creep in 20% cold worked 316 stainless steel [J]. J. Nucl. Mater., 1998, 257(2): 118
[14] John Paul Foster, KermitBunde, Grossbeck M L, et al. Temperature dependence of the 20% cold worked 316 stainless steel steady state irradiation creep rate [J]. J. Nucl. Mater., 1999, 270(3): 357
[15] People's Republic of China General Administration of quality supervision and quarantine, Metallic materials-uniaxial creep testing method in tension [S]. GB/T 2039-2012
[15] (中华人民共和国国家质量监督检疫总局, 金属材料单轴拉伸蠕变试验方法 [S]. GB/T 2039-2012)
[16] Liu X Y, Pan Q L, Lu Z L, et al. Creep behavior of Al-Cu-Mg-Ag heat-resistant alloy at elevater temperature [J]. Acta Metall. Sin. 2011, 47(1): 53
[17] Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shang Hai Jiao Tong University Press, 2006
[17] (胡赓祥, 蔡珣, 戒咏华. 材料科学基础. 第2版 [M]. 上海: 上海交通大学出版社, 2006)
[18] Zhao J, Gong J, Saboo A, et al. Dislocation-based modeling of long-term creep behaviors of Grade 91 steels [J]. Acta Mater., 2018
[19] Wang S J, Jozaghi T., Karaman I., et al. Hierarchical evolution and thermal stability of microstructure with deformation twins in 316 stainless steel [J]. Mater. Sci. Eng., A, 2017, 694: 121
[20] Wirmark G, Nilsson J O, Dunlop G L. Sliding at twin boundaries during high-temperature creep [J]. Philos. Mag. A, 1981, 43(1): 93
[21] Wang L Y, Song X M, Luo X M, et al. 3D X-ray tomography characterization of creep cavities in small-punch tested 316 stainless steels [J]. Mater. Sci. Eng., A, 2018, 724: 69
[22] National Research Institute for Metals (NRIM) Creep Data Sheet, No.14B for 18Cr-12Ni-Mo stainless steel plates [DB/OL]. JIS SUS 316-HP. 1988
[23] National Research Institute for Metals (NRIM) Creep Data Sheet, No.15B for 18Cr-12Ni-Mo stainless steel bars [DB/OL]. JIS SUS 316-B. 1988
[24] Meyers M A, Chawla K K. Mechanical behavior of materials [M]. 2009: Chambridge University Press.
[25] Larson F R. A time-temperature relationship for rupture and creep stresses [J]. Transactions of American Society of Mechanical Engineers, 1952, 74: 765
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!