Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (5): 387-393    DOI: 10.11901/1005.3093.2018.569
ARTICLES Current Issue | Archive | Adv Search |
Effect of Carbon Nanotubes on Thermal Expansion Properties of Cement-based Materials
Shuwen ZHANG,Jie ZHANG(),Guichun WANG,Danying GAO
School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
Cite this article: 

Shuwen ZHANG,Jie ZHANG,Guichun WANG,Danying GAO. Effect of Carbon Nanotubes on Thermal Expansion Properties of Cement-based Materials. Chinese Journal of Materials Research, 2019, 33(5): 387-393.

Download:  HTML  PDF(3566KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Carbon nanotubes of different proportions were added to the cement matrix to prepare cement-based materials, and the thermal expansion property of those materials was measured from room temperature to 600°C. While the materials were characterized by means of DSC/TG, XRD, pore size distribution diagrams, SEM images. The results show that the thermal expansion rate is positive from room temperature to 150°C, there is a slight expansion; the thermal expansion rate is negative and gradually decreases from about 150°C to 590°C, the specimen shrinks continuously. When the blending amount of carbon nanotubes is 0.3%, the thermal expansion curve is always below those with the amounts other than 0.3%, and the thermal expansion rate reaches a minimum value. This shows that when the amount of carbon nanotubes is 0.3%, the hydration reaction is sufficient and a large amount of hydrous calcium silicate gel is produced, and the shrinkage is obvious and the density is significantly improved. Therefore, the content of 0.3% carbon nanotubes can effectively prevent the emerge of abnormal expansion of local area for a heating pipe and therefore, improve the durability of the structure.

Key words:  composites      carbon nanotubes      carbon nanotubes cement-based composites      microstructure      high temperature effect      thermal expansion rate     
Received:  20 September 2018     
ZTFLH:  TB33  
Fund: Supported by China Postdoctoral Science Foundation Project(2017M612419);Henan Key Scientific Research Project(17A580004)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.569     OR     https://www.cjmr.org/EN/Y2019/V33/I5/387

PropertyParameter
Non-carbon content/%, mass fraction<5
Median wall number/Walls7
Median outer diameter(OD)/nm8~15 nm
Median inner diameter(ID)/nm3~5 nm
Median tube length/μm3~12 μm
Median aspect ratio300
Moisture content/%, mass fraction1
Bulk density(tapped)/g·cm-30.15
Specific surface area/m2·g-1>233
Table 1  Basic performance parameters of carbon nanotubes
Chemical compositionCaOSiO2Al2O3Fe2O3MgOSO3Cl-
Content63.5521.487.362.922.462.110.018
Table 2  Chemical composition of cement (%, mass fraction)
SpecimenMix proportionWater-cement ratioBlending amount/%
Cement/gMWCNTs /gDispersantWater/mLDefoamer /g
A0100005000.40
A11000.10.6500.210.40.1
A21000.20.6500.210.40.2
A31000.30.6500.210.40.3
A41000.40.6500.210.40.4
A51000.50.6500.210.40.5
A61000.60.6500.210.40.6
Total7002.13.63501.26
Table 3  Mix ratio of test materials
Fig.1  Cement-based admixture specimen nanotubes DSC/TG spectrum (a) cement paste, (b) 0.3% carbon nanotube cementitious, (c) 0.6% carbon nanotube cementitious
Fig.2  XRD spectra of cemented carbon nanotube specimens (a) 16℃, (b) 600℃
Fig.3  
Fig.4  SEM images of CNT cement-based materials (a) cement paste specimen, (b) 0.3% carbon nanotube cement-based specimen, (c) 0.6% carbon nanotube cement-based specimen
Fig.5  
Fig.6  
Fig.7  
Fig.8  
[1] JinW L, ZhongX P. Relationship of structural durability with structural safety and serviceability in whole life-cycle [J]. J. Build. Struct., 2009, 30(6): 1
[1] 金伟良, 钟小平. 结构全寿命的耐久性与安全性、适用性的关系 [J]. 建筑结构学报, 2009, 30(6): 1)
[2] FuY F, WongY L, TangC A, et al. Thermal induced stress and associated cracking in cement-based composite at elevated temperatures-Part I: Thermal cracking around single inclusion [J]. Cem. Concr. Compos., 2004, 26: 99
[3] FanJ, XiongG J, LiG Y. Progress in research and development of carbon nanotubes-reinforced cement-based composite materials [J]. Mater. Rev., 2014, 28(11): 142
[3] 范 杰, 熊光晶, 李庚英. 碳纳米管水泥基复合材料的研究进展及其发展趋势 [J]. 材料导报, 2014, 28(11): 142)
[4] JabeenS, KausarA, MuhammadB, et al. A review on polymeric nanocomposites of nanodiamond, carbon nanotube, and nanobifiller: Structure, preparation and properties [J]. Polym.-Plast. Technol. Eng., 2015, 54: 1379
[5] YanH, RanQ P, ShuX, et al. Research advances on performance optimization of cementitious materials using nanomaterials [J]. Mater. China, 2017, 36: 645
[5] 严 涵, 冉千平, 舒 鑫等. 纳米材料优化水泥基材料性能的研究进展 [J]. 中国材料进展, 2017, 36: 645
[6] XuS L, LiuJ T, LiQ H. Mechanical properties and microstructure of multi-walled carbon nanotube-reinforced cement paste [J]. Constr. Build. Mater., 2015, 76: 16
[7] KashaniA, NgoT D, WalkleyB, et al. Thermal performance of calcium-rich alkali-activated materials: A microstructural and mechanical study [J]. Constr. Build. Mater., 2017, 153: 225
[8] LiQ H, YaoY, SunB. Investigation on behavior of slag to thermal expansion of cement [J]. Concrete, 2009, (1): 84
[8] 李清海, 姚 燕, 孙 蓓. 磨细矿渣对水泥基材料热膨胀性能影响的研究 [J]. 混凝土, 2009, (1): 84)
[9] TangQ L, HuangJ, TianG X. Dispersion of carbon nanotubes and research progress on mechanical properties of carbon nanotubes cement-based composites [J]. J. Funct. Mater., 2017, 48: 6042
[9] 唐倩兰, 黄 俊, 田国鑫. 碳纳米管分散性及其水泥基复合材料力学性能的研究进展 [J]. 功能材料, 2017, 48: 6042
[10] PangZ P, SunX G, ChengX Y, et al. Effect of carbon nanotube content on electromagnetic interference shielding performance of carbon nanotube-cellulose composites materials [J]. Chin. J. Mater. Res., 2015, 29(8): 583
[10] 庞志鹏, 孙晓刚, 程晓圆等. 碳纳米管含量对碳纳米管-纤维素复合材料电磁屏蔽性能的影响 [J]. 材料研究学报, 2015, 29(8): 583)
[11] GaoX, WeiY, HuangW. Phase identification in cement paste by modulus mapping [J]. Chin. J. Mater. Res., 2016, 30(5): 321
[11] 高 翔, 魏 亚, 黄 卫. 基于动态模量成像的硬化水泥浆体微观物相的识别 [J]. 材料研究学报, 2016, 30(5): 321)
[12] Petru?evskiG, AcevskaJ, StefkovG, et al. Characterization and origin differentiation of morphine derivatives by DSC/TG and FTIR analysis using pattern recognition techniques [J]. J. Therm. Anal. Calorim., 2016, 123: 2561
[13] ZhangN, ZhangT, LiaoJ, et al. Effect of pore solution freezing on thermal strain of water-saturated cement based material at low temperature by differential scanning calorimetry [J]. J. Chin. Ceram. Soc., 2015, 43: 599
[13] 张 楠, 张 涛, 廖 娟等. 利用差示扫描量热法研究孔溶液结冰对水饱和水泥基材料低温热形变的影响 [J]. 硅酸盐学报, 2015, 43: 599
[14] ReddyG K, YarakkulaK. Exploration of geo-mineral compounds in granite mining soils using XRD pattern data analysis [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2017, 263: 032003
[15] GaoY, De SchutterG, YeG, et al. A microscopic study on ternary blended cement based composites [J]. Constr. Build. Mater., 2013, 46: 28
[16] GatelyR D, Marc in het Panhuis. Filling of carbon nanotubes and nanofibres [J]. Beilstein J. Nanotechnol., 2015, 6: 508
[17] XiaoH J, SunW, JiangJ Y, et al. Characterization of microstructure of cement-based materials by multi-cycle-MIP method [J]. J. Southeast Univ. (Nat. Sci. Ed.), 2013, 43: 371
[17] 肖海军, 孙 伟, 蒋金洋等. 水泥基材料微结构的反复压汞法表征 [J]. 东南大学学报(自然科学版), 2013, 43: 371
[18] DingQ J, HeZ. Advances in research on the formation mechanism of cementitious paste microstructure in current concrete [J]. Mater. China, 2009, 28(11): 8
[18] 丁庆军, 何 真. 现代混凝土胶凝浆体微结构形成机理研究进展 [J]. 中国材料进展, 2009, 28(11): 8)
[19] LvS H, ZhangJ, LuoX Q, et al. Microstructure and properties for composites of graphene oxide/cement [J]. Chin. J. Mater. Res., 2018, 32(3): 233
[19] 吕生华, 张 佳, 罗潇倩等. 氧化石墨烯/水泥基复合材料的微观结构和性能 [J]. 材料研究学报, 2018, 32(3): 233)
[20] HonorioT, BaryB, BenboudjemaF. Thermal properties of cement-based materials: Multiscale estimations at early-age [J]. Cem. Concr. Compos., 2018, 87: 205
[21] WangH T, WebbT, BitlerJ W. Study of thermal expansion and thermal conductivity of cemented WC-Co composite [J]. Int. J. Refract. Met. Hard Mater., 2015, 49: 170
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[5] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[8] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[11] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[12] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[13] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
[14] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[15] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
No Suggested Reading articles found!