Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (5): 371-378    DOI: 10.11901/1005.3093.2018.429
ARTICLES Current Issue | Archive | Adv Search |
Performance of Lithium-ion Capacitors Using Pre-lithiated Multi-walled Carbon Nanotube Composite Anode
Wei CHEN1,Yanyan NIE2,Xiaogang SUN1,2(),Xu LI1,Jie WANG1,Hao HU1,Guodong LIANG1,Yapan HUANG1,Chengcheng WEI1
1. Mechanical and Electronic Engineering School, Nanchang University, Nanchang 330031, China
2. Jiangxi Kelaiwei Carbon Nano Co Ltd, Nanchang 330052, China
Cite this article: 

Wei CHEN,Yanyan NIE,Xiaogang SUN,Xu LI,Jie WANG,Hao HU,Guodong LIANG,Yapan HUANG,Chengcheng WEI. Performance of Lithium-ion Capacitors Using Pre-lithiated Multi-walled Carbon Nanotube Composite Anode. Chinese Journal of Materials Research, 2019, 33(5): 371-378.

Download:  HTML  PDF(6646KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical performance of lithium-ion capacitors with stabilized lithium metal powder/multi-walled carbon nanotubes composite as anode and activated carbon as cathode was investigated by means of galvanostatic charge/discharge (GCD) tests and electrochemical impedance spectroscopy (EIS). The results show that the introduction of stabilized lithium metal powder can eliminate the majority of the inherent irreversible capacity of carbon nanotubes and greatly improve the electrochemical performance of lithium-ion capacitors. The lithium-ion capacitors have a specific capacitance of 85.18 F/g at the current density of 0.05 A/g. The maximum energy density and power density reached 140.4 Wh/kg and 5.25 KW/kg respectively in the current range of 0.05~4 A/g. The continuous galvanostatic charge-discharge cycling tests revealed that the lithium-ion capacitors could maintain 82% of the capacity after 3000 cycles. In sum, the lithium-ion capacitors showed an excellent cycle performance with high energy and power density.

Key words:  composites      pre-lithiated multi-walled carbon nanotubes      internal short      stabilized lithium metal powder      lithium-ion capacitors     
Received:  03 July 2018     
ZTFLH:  TM53,O646  
Fund: Jiangxi Scientific Fund(20142BBE50071);Jiangxi Education Fund(KJLD13006)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.429     OR     https://www.cjmr.org/EN/Y2019/V33/I5/371

Fig.1  Schematic inner structure of lithium-ion capacitors
Fig.2  Micromorphology of SLMP
Fig.3  First charge-discharge of curve (a) and specific capacity voltage differential curve (b) before and after pre-lithiated of carbon nanotubes
Fig.4  Micromorphology of before (a) and after (b) pre-lithiated of multi-walled carbon nanotube composite anode
Fig.5  Galvanostatic charge/discharge curves of before (a) and after (b) pre-lithiated carbon nanotubes anode lithium-ion capacitors, specific capacitance with different current density (c) and the Ragone plots (d) for the LICs

Current density

mA·g-1

PrimitivePre-lithiated

CSP

F·g-1

ESP

Wh·kg-1

PSP

W·kg-1

CSP

F·g-1

ESP

Wh·kg-1

PSP

W·kg-1

5010.7417.5374.6185.18140.4074.70
1008.6613.86148.5175.91123.81149.02
2007.2811.30294.7773.32117.00296.42
5005.707.99719.1469.90104.29729.04
10005.236.141382.361.2681.171417.9
2000---54.6967.442790.6
3000---41.3343.924054.5
4000---34.9132.095250.7
Table 1  Specific capacitance, power density and energy density data of LICs with different current density
Fig.6  Cycle performance of before and after pre-lithiated carbon nanotubes anode lithium-ion capacitors
Fig.7  Electrochemical impedance spectra of before (a) and after (b) 3000 cycles charge and discharge test
SampleRSSEI layersCharge transfer
RSEICSEI/FRctCd1/F
AC/CNT before6.83--107.089×10-4

AC/CNT after

AC/CNT+SLMP before

AC/CNT+SLMP after

17.38

4.40

6.08

167.3

-

18.31

1.8×10-4

-

3.8×10-4

33.01

53.26

31.37

1.6×10-3

3.8×10-4

1.1×10-2

Table 2  Fitting parameter obtained from the LICs before cycling and after 3000 cycles
Fig.8  Micromorphology of before (a) and after (b) cycling of multi-walled carbon nanotube composite anode
[1] LiuM, ZhangL, HanP, et al. Controllable formation of niobium nitride/nitrogen-doped graphene nanocomposites as anode materials for lithium-ion capacitors [J]. Part. Part. Syst. Charact., 2016, 32(11): 1006
[2] WangH, ZhangY, AngH, et al. A high-energy lithium-ion capacitor by integration of a 3D interconnected titanium carbide nanoparticle chain anode with a pyridine-derived porous nitrogen-doped carbon cathode [J]. Adv. Funct. Mater., 2016, 26(18): 3082
[3] HosseinzadehE, GenieserR, WorwoodD, et al. A systematic approach for electrochemical-thermal modelling of a large format lithium-ion battery for electric vehicle application [J]. J. Power Sources, 2018, 382: 77
[4] HaoZ Q, CaoJ P, WuY, et al. Preparation of porous carbon sphere from waste sugar solution for electric double-layer capacitor [J]. J. Power Sources, 2017, 361: 249
[5] DuH, YangH, HuangC, et al. Graphdiyne applied for lithium-ion capacitors displaying high power and energy densities [J]. Nano Energy, 2016, 22: 615
[6] SunX, ZhangX, LiuW, et al. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor [J]. Electrochim. Acta, 2017, 235
[7] ZhangJ, WangJ, ShiZ Q. Research progress of carbon-based lithium ion capacitor [J]. Energy Storage Sci. Technol., 2016, 5(6): 807
[7] 张 进, 王 静, 时志强. 炭基锂离子电容器的研究进展 [J]. 储能科学与技术, 2016, 5(6): 807)
[8] RenJ J, SuL W, QinX, et al. Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density [J]. J. Power Sources, 2014, 264(264): 108
[9] FanK, TianY, ZhangX, et al. Application of stabilized lithium metal powder and hard carbon in anode of lithium-sulfur battery [J]. J. Electroanal. Chem., 2016, 760: 80
[10] ZhangS H, ChiC X, ZhangS W. New progress on prelithiation in Li-ion batteries [J]. Chinese Journal of Power Sources, 2015, 39(7): 1543
[10] 张双虎, 迟彩霞, 张盛武. 锂离子电池预嵌锂技术的最新研究进展 [J]. 电源技术, 2015, 39(7): 1543)
[11] JinZ, LiuX, JingW, et al. Different types of pre-lithiated hard carbon as negative electrode material for lithium-ion capacitors [J]. Electrochim. Acta, 2016, 187: 134
[12] YuanM, LiuW, ZhuY, et al. Electrochemical performance of pre-lithiated graphite as negative electrode in lithium-ion capacitors [J]. Russ. J. Electrochem., 2014, 50(11): 1050
[13] SivakkumarS R, PandolfoA G. Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode [J]. Electrochim. Acta, 2012, 65: 280
[14] GaoX, ZhanC, YuX, et al. A high performance lithium-ion capacitor with both electrodes prepared from sri lanka graphite ore [J]. Materials, 2017, 10(4)
[15] BarcellonaS, CiccarelliF, IannuzziD, et al. Overview of lithium-ion capacitor applications based on experimental performances [J]. Electric Machines & Power Systems, 2016, 44(11): 1248
[16] JayasingheR, ThapaA K, DharmasenaR R, et al. Optimization of multi-walled carbon nanotube based CFx, electrodes for improved primary and secondary battery performances [J]. J. Power Sources, 2014, 253(5): 404
[17] HoweJ Y, BoatnerL A, KolopusJ A, et al. Vacuum-tight sample transfer stage for a scanning electron microscopic study of stabilized lithium metal particles [J]. J. Mater. Sci., 2012, 47(3): 1572
[18] AiG, WangZ, ZhaoH, et al. Scalable process for application of stabilized lithium metal powder inLi-ion batteries [J]. J. Power Sources, 2016, 309: 33
[19] KimM, XuF, JinH L, et al. A fast and efficient pre-doping approach to high energy density lithium-ion hybrid capacitors [J]. J. Mater. Chem. A, 2014, 2(26): 10029
[20] JarvisC R, LainM J, GaoY, et al. A lithium ion cell containing a non-lithiated cathode [J]. J. Power Sources, 2005, 146(1-2): 331
[21] PingL N, ZhengJ M, ShiZ Q, et al. Electrochemical Performance of Lithium Ion Capacitors Using Li+-Intercalated Mesocarbon Microbeads as the Negative Electrode [J]. Acta Phys.Chim. Sin., 2012, 28(7): 1733
[21] 平丽娜, 郑嘉明, 时志强等. 以预嵌锂中间相碳微球为负极的锂离子电容器的电化学性能 [J]. 物理化学学报, 2012, 28(7): 1733)
[22] ZhangJ, ShiZ, WangJ, et al. Composite of mesocarbon microbeads/hard carbon as anode material for lithium ion capacitor with high electrochemical performance [J]. J. Electroanal. Chem., 2015, 747: 20
[23] TaoH, MukoyamaD, NaraH, et al. Electrochemical impedance spectroscopy analysisfor lithium-ion battery using Li4Ti5O12 anode [J]. J. Power Sources, 2013, 222(2): 442
[24] DokkoK, FujitaY, MohamediM, et al. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part II. Disordered carbon [J]. Electrochim. Acta, 2003, 47(6): 933
[25] R.K?tz , M.Carlen . Principles and applications of electrochemical capacitors [J]. Electrochim. Acta, 2000, 45(15): 2483
[26] CaoW J, ZhengJ P. The effect of cathode and anode potentials on the cycling performance of Li-ion capacitors [J]. Journal of the Electrochemical Society, 2013, 160(9): A1572
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!