Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (5): 345-351    DOI: 10.11901/1005.3093.2018.540
ARTICLES Current Issue | Archive | Adv Search |
Fabrication and Properties of Powder Metallurgical Porous High Nitrogen Austenitic Stainless Steel
Ling HU1,Liejun LI1(),Hanlin PENG2,Tungwai NGAI1,Songjun CHEN1,Weipeng ZHANG1
1. National Engineering Research Center of Near-net-shape Forming Technology for Metallic Materials, South China University of Technology, Guangzhou 510640, China
2. State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article: 

Ling HU,Liejun LI,Hanlin PENG,Tungwai NGAI,Songjun CHEN,Weipeng ZHANG. Fabrication and Properties of Powder Metallurgical Porous High Nitrogen Austenitic Stainless Steel. Chinese Journal of Materials Research, 2019, 33(5): 345-351.

Download:  HTML  PDF(10542KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Porous high-N austenitic stainless steel was fabricated via powder metallurgy and its microstructure and properties were investigated. Results show that high temperature nitridation process promotes the phase transformation of the stainless steel from duplex phase to austenitic phase. Precipitations with different morphologies were observed in the microstructure. XRD results and TEM results identified that both the two precipitates with different morphologies are all CrN phase. With the increasing pore-forming agent the porosity of the prepared alloy increased, which could result in degradation of mechanical properties and corrosion resistance. The superior mechanical property of porous alloys fabricated by this method might be ascribed to the effect of solid solution strengthening of the solute N and precipitation strengthening of nitrides. With the increasing porosity, both of the corrosion tendency and corrosion rate increased for the as-fabricated porous high-N austenitic stainless steel. Among others, the alloy with 10% (mass fraction) pore former exhibits the best corrosion resistance. Besides, the increase of sintering temperature can enhance the densification of the as-prepared alloy, thus improves its corrosion resistance.

Key words:  metallic materials      high nitrogen austenitic stainless steel      powder metallurgy      porous      mechanical properties      corrosion resistance     
Received:  06 September 2018     
ZTFLH:  TG142  
Fund: National Natural Science Foundation of China(51674124)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.540     OR     https://www.cjmr.org/EN/Y2019/V33/I5/345

Fig.1  SEM morphology (a) and particle size distri-bution (b) of the as-received powders
Sample codes

Sintering

temperature /℃

Content of

space holder

/%, mass fraction

S1N1200-10-374120010
S2N1200-20-374120020
S3N1200-30-374120030
S4N1200-40-374120040
S5N1120-10-374112010
S6N1120-20-374112020
S7N1120-30-374112030
S8N1120-40-374112040
S9N1250-30-374125030
Table 1  Sample codes and detailed processing parameters
Fig.2  SEM images of low magnification of N1200-10-374 alloy (a); high magnification of Fig.2a (b); low magnification of N1200-20-374 alloy (c); high magnification of Fig.2c (d); low magnification of N1200-30-374 alloy (e) and high magnification of Fig.2e (f)
Fig.3  XRD patterns of the as-fabricated high nitrogen austenitic stainless steel (a) and Thermo-Calc phase diagram (b) of the Fe-17.5Cr-10.85Mn-3.4Mo-xN alloy
Fig.4  TEM micrograph of the N1120-30-374 alloy (a) morphology and selected area electron diffraction (SAED) pattern;(b) TEM-EDS results of the granular-shaped CrN precipitates; (c) morphology and selected area electron diffraction (SAED) pattern and (d) TEM-EDS results of the worm-shaped CrN precipitates
Sample codesPorosity/%

Compressive strength

/MPa

Yield strength

/MPa

N1200-10-37426.31259.3516.7
N1200-20-37437.8516.0249.7
N1200-30-37445.0377.0220.4
N1200-40-37455.85244.2135.0
N1120-30-37451.8151.1129.9
N1250-30-37442.6383.2224.8
Table 2  Porosity and mechanical properties of all the samples
Fig.5  Influence of the porosity and sintering temperature on the anodic polarization curves in 0.9% NaCl solution of the as-fabricated porous materials
Sample codesEcorr/VIcorr/mA·cm-2Rp/Ω·cm2ba/V·dec-1bc/V·dec-1Corrosion rate/mm·a-1
N1120-10-374-0.7570.0013742.00.1420.1480.007
N1120-20-374-0.8510.153130.40.3740.3030.277
N1120-30-374-0.8860.26293.40.2090.1692.211
N1120-40-374-0.9850.497105.50.1850.1694.817
N1200-30-374-0.8320.233115.00.1960.1741.641
N1250-30-374-0.8690.067209.40.0860.0870.416
Table 3  Corrosion parameters of the as-fabricated porous high-nitrogen stainless steel from the polarization curves
[1] SulongM A, VesenjakM, BelovaI V, et al. Compressive properties of advanced pore morphology (APM) foam elements [J]. Mater. Sci. Eng., A 2014, 607: 498
[2] KashefS, AsgariA, HilditchT B, et al. Fracture mechanics of stainless steel foams [J]. Mater. Sci. Eng. A, 2013, 578: 115
[3] Simmons J W, Mechanical properties of isothermally aged high-nitrogen stainless steel [J]. Metall. Mater. Trans. A, 1995, 26A: 2085
[4] YangK, RenY B, Nickel-free stainless steel for medical applications [J]. Sci. Technol. Adv. Mater., 2010, 11: 1
[5] ZhaoH C, RenY B, LiuW P, et al. Effect of cold deformation on friction wear property of 00Cr18Mn15Mo2N0.9 high-nitrogen nickel-free stainless steel [J]. Chin. J. Mater. Res., 2016, 30(3): 171
[5] 赵浩川, 任伊宾, 刘文朋等. 冷变形对00Cr18Mn15Mo2N0.9高氮无镍不锈钢摩擦磨损性能的影响[J]. 材料研究学报, 2016, 30(3): 171)
[6] AlvarezK, SatoK, HyunS K, et al. Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications [J]. Mater. Sci. Eng. C, 2018, 28(1): 44
[7] LiY H, YangC, KangL M, et al. Biomedical porous TiNbZrFe alloys fabricated using NH4HCO3 as pore forming agent through powder metallurgy route [J]. Powder Metall., 2015, 58(3): 228
[8] MondalD P, JainH, DasS, et al. Stainless steel foams made through powder metallurgy route using NH4HCO3 as space holder [J]. Mater. Des., 2015, 88: 430
[9] CuiD W, QuX H, GuoP, eral . Sintering optimisation and solution annealing of high nitrogen nickel free austenitic stainless steels prepared by PIM [J]. Powder Metall., 2013, 53(1): 91
[10] OhI H, NomuraN, MasahashiN, et al. Mechanical properties of porous titanium compacts prepared by powder sintering [J]. Scr. Mater., 2003, 49(12): 1197
[11] IdeT, TaneM, IkedaT, et al. Compressive properties of lotus-type porous stainless steel [J]. J. Mater. Res., 2006, 21(1): 185
[12] HuL, NgaiT, PengH L, et al. Microstructure and properties of porous high-N Ni-free austenitic stainless steel fabricated by powder metallurgical route [J]. Materials, 2018, 11: 1058
[13] PengH L, HuL, NgaiT, et al. Effects of austenitizing temperature on microstructure and mechanical property of a 4-GPa-grade PM high-speed steel [J]. Mater. Sci. Eng. A, 2018, 719: 21
[14] ChangS H, ChenJ Z, HsiaoS H, et al. Nanohardness, corrosion and protein adsorption properties of CuAlO2 films deposited on 316L stainless steel for biomedical applications [J]. Appl. Surf. Sci., 2014, 289: 455
[15] Garcia-CabezonC, BlancoY, Rodriguez-MendezM L, et al. Characterization of porous nickel-free austenitic stainless steel prepared by mechanical alloying [J]. J. Alloys Compd., 2017, 716: 46
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
No Suggested Reading articles found!