Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (5): 331-337    DOI: 10.11901/1005.3093.2018.494
ARTICLES Current Issue | Archive | Adv Search |
Effect of Ta on High Temperature Tensile Properties of Advanced Ni-based Powder Metallurgy Superalloys
Zhicheng WANG,Hao WANG(),Hailiang HUANG,Benfu Hu
School of Material Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Zhicheng WANG,Hao WANG,Hailiang HUANG,Benfu Hu. Effect of Ta on High Temperature Tensile Properties of Advanced Ni-based Powder Metallurgy Superalloys. Chinese Journal of Materials Research, 2019, 33(5): 331-337.

Download:  HTML  PDF(20082KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure and high temperature tensile properties of five powder metallurgy FGH98 alloys with different Ta content were systematically investigated by optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscope (TEM) and high temperature tensile testing machine. The results show that: Ta can obviously eliminate the prior particle boundaries (PPB) and change the morphology of secondary γ'-phase. Ta can promote the generation of tertiary γ'-phase. Ta improved the high temperature tensile strength and yield strength of the alloys. When the Ta content was 2.4% (the same below), the alloy has the preferable plasticity. Alloys without Ta and with 1.2%Ta showed a crystalline-like fracture surface while the alloy with 2.4%Ta showed ductile fracture surface. Alloys with 3.6%Ta and 4.8%Ta exhibited transgranular and intergranular cleavage fractures. The alloy without Ta deformed mainly by generating a large number of twins and dislocations bypassing the γ'-phase. With the increasing Ta content, the dislocations shear the γ'-phase, therewith produce a large number of stacking faults.

Key words:  metallic material      Ni-based P/M superalloy      microstructure      tensile properties      deformation mechanism     
Received:  13 August 2018     
ZTFLH:  TG132.3+2  
Fund: National Natural Science Foundation of China(51571020);National Key Basic Research Program of China(2016YFB0700505)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.494     OR     https://www.cjmr.org/EN/Y2019/V33/I5/331

Alloys0%Ta1.2%Ta2.4%Ta3.6%Ta4.8%Ta

Average grain

size/μm

35.933.833.736.737.3
Table 1  Average grain size of different Ta content heat-treated alloys
Fig.1  3D APT map of alloy with 2.4%Ta
Fig.2  
Fig.3  Morphology of γ' phase in alloy after heat treatment (a) 0%Ta; (b) 1.2%Ta; (c) 2.4%Ta; (d) 3.6%Ta; (e) 4.8%Ta
Alloys0%Ta1.2%Ta2.4%Ta3.6%Ta4.8%Ta
Average size of γ′/nm182200215245288
Average size of γ′/nm55.648.047.648.453.2
Volume fraction of γ′ /%1.73.34.55.05.3
Table 2  Secondary and tertiary γ' size of alloys with different Ta contents after heat treatement
Fig.4  Tensile Properties of different Ta content alloys tested at 815℃
Fig.5  Fracture morphology of different Ta content alloys after test at 815℃ (a) 0%Ta; (b) 1.2%Ta; (c) 2.4%Ta; (d) 3.6%Ta; (e) 4.8%Ta
Fig.6  Microstructure of different Ta content alloys after stretch at 815℃ (a) 0%Ta; (b) 2.4%Ta; (c) 4.8%Ta
Fig.7  TEM images showing deformation microstructure of different Ta content alloys (a) 0%Ta alloy; (b) (c) 2.4%Ta alloy, (d) (e) 4.8%Ta alloy
[1] ZhangY W, LiuJ T. Development in powder metallurgy superalloy [J]. Mater China, 2013, 32(01): 1
[1] 张义文, 刘建涛. 粉末高温合金研究进展 [J]. 中国材料进展, 2013, 32(01): 1)
[2] JiaC C, TianG F. Powder metallurgy superalloy [J]. Metal World, 2011, 21(2): 19
[2] 贾成厂, 田高峰. 粉末高温合金 [J]. 金属世界, 2011, 21(2): 19
[3] JiaJ, TaoY, ZhangY W, et al. Recent development of third generation P/M superalloy rené104 [J]. Powder metallurgy industry, 2007, 17(3): 36
[3] 贾 建, 陶 宇, 张义文等. 第三代粉末冶金高温合金René104的研究进展 [J]. 粉末冶金工业, 2007, 17(3): 36)
[4] JanowskiG M, HeckelR W, PletkaB J. The effects of tantalum on the microstructure of two polycrystalline nickel-base superalloys: B-1900+Hf and MAR-M247 [J]. Metall. Trans. A, 1986, 17(11): 1891
[5] NathalM V, EbertL J. The influence of cobalt, tantalum, and tungsten on the microstructure of single crystal nickel-base superalloys [J]. Metall. Trans. A, 1985, 16(10): 1849
[6] ZhengL, ZhangG, LeeT L, et al. The effects of Ta on the stress rupture properties and microstructural stability of a novel Ni-base superalloy for land-based high temperature applications [J]. Mater. Des, 2014, 8(61): 61
[7] ZhangJ. Effect of Ti and Ta on hot cracking susceptibility of directionally solidified Ni-based superalloy IN792 [J]. Scripta Mater, 2003, 48(6): 677
[8] JonesJ, MackayD JC. Tensile deformation behavior of a nickel based superalloy at different temperatures [A]. Proceedings of the 8th International Symposium on Superalloy [C]. Pennsylvania, 1996
[9] WuK, LiuG Q, HuB F, et al. Research progress of new type high-performans P/M turbine disk supealloys [J]. Mater China, 2010, 29(03): 23
[9] 吴 凯, 刘国权, 胡本芙等. 新型涡轮盘用高性能粉末高温合金的研究进展 [J]. 中国材料进展, 2010, 29(03): 23)
[10] YangJ, DongJ X, ZhangM C, aler. High temperature fatigue crack growth behavior of a novel powder metallurgy superalloy FGH98 [J]. Acta.Mater.Sin, 2013, 49(01): 71
[10] 杨 健, 董建新, 张麦仓等. 新型镍基粉末高温合金FGH98的高温疲劳裂纹扩展行为研究 [J]. 金属学报, 2013, 49(01): 71)
[11] HuronE S, BainK R, MourerD P, et al. The influence of grain boundary elements on properties and microstructures of P/M nickel base superalloys [A]. Proceeding of the 10th International Symposium on superalloy [C]. Warrendale, 2004
[12] Hardy1M C, ZirbelB, . Developing damage tolerance and creep resistance in a high strength nickel alloy for disc applications [A]. Proceeding of the 10th International Symposium on superalloy [C]. Warrendale, 2004
[13] MourerD P, HuronE S, et al. Superalloy optimized for hight-temperature performance in high-pressure turbine disks [P]. America, US6521175B1, 2002
[14] GaoS, HouJ, YangF. Effects of tantalum on microstructure and mechanical properties of cast IN617 alloy [J]. Mater.Sci.Eng.A, 2017, 706(8): 153
[15] GaoS, HouJ, YangF. Effect of Ta on microstructural evolution and mechanical properties of a solid-solution strengthening cast Ni-based alloy during long-term thermal exposure at 700℃ [J].Alloys. Compd., 2017, 729(30): 903
[16] ShiL,YuJ J, CuiC Y, et al. Effect of Ta additions on microstructure and mechanical properties of asingle-crystal Co-Al-W-basealloy [J]. Materials Letters, 2015, 149(3): 58
[17] LundA C, VoorheesP W. The effects of elastic stress on microstructural development: the three-dimensional microstructure of a γ-γ′ alloy [J]. Acta Mater., 2002, 50(18): 2585
[18] MitchellR J, PreussM. Inter-Relationships between Composition, γ′ Morphology, Hardness, and γ-γ′ Mismatch in Advanced Polycrystalline Nickel-Base Superalloys during Aging at 800℃ [J]. Metall and Mat Trans A, 2007, 38(4): 615
[19] ShangS L. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base Superalloys [J]. J Phys: Condens. Matter, 2012, 24: 505
[20] YuanY, GuY F, et al. Creep mechanisms of a new Ni-Co-base disc superalloy at an intermediate temperature [J]. J Microsc, 2012, 248(7): 34
[21] YuanY, GuY F, CuiC Y, et al. Creep mechanismsof U720Li disc superalloy at intermediate temperature [J]. Mater. Sci. Eng. A, 2011, 528(15): 5106
[22] CaronP, KhanT, VeyssiereP. On precipitate shearing by superlattice stacking faults in superalloys [J]. Philos. Mag. A, 1998, 57(10): 859
[23] TianC G, HanG M, et al. Effects of Co content on tensile properties and deformation behaviors of Ni-based disk superalloys at different temperatures [J]. Mater Design, 2015, 88 (1): 123
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
No Suggested Reading articles found!