Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (10): 742-748    DOI: 10.11901/1005.3093.2019.100
ARTICLES Current Issue | Archive | Adv Search |
Preparation and Polishing Performance of Dendritic Mesoporous Silica Particle Abrasives
WANG Wanying1,CHEN Ailian2,3,MA Xiangyu1,CAI Wenjie1,CHEN Yang1()
1. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
2. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
3. Jiangsu Key Laboratory of Green Process Equipment, Changzhou 213164, China
Cite this article: 

WANG Wanying,CHEN Ailian,MA Xiangyu,CAI Wenjie,CHEN Yang. Preparation and Polishing Performance of Dendritic Mesoporous Silica Particle Abrasives. Chinese Journal of Materials Research, 2019, 33(10): 742-748.

Download:  HTML  PDF(4871KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The dendritic mesoporous silica particles (DMSPs) with Y-type mesochannels were synthesized via an oil-water biphase stratification reaction with decahydronaphthalene as the upper oil phase. The spherical DMSPs were then characterized by means of TEM, SEM, Low-angle XRD, nitrigen adsorption/desorption and particle size distribution. Results show that the prepared particles presented an average particle size of 72±6 nm with a narrow size distribution; The DMSPs presented three-dimensional central-radial mesochannels with an average pore inner diameter of 7.7 nm; The formed mesopores presented the lack of long-range order. After polishing with DMSPs abrasives, the root-mean-square roughness of oxidized silicon workpieces reduced from 0.76 to 0.21 nm. The maximum asperity height in sectional profiles decreased from 1.48 to 0.50 nm, and the maximum valley depth reduced from 1.86 to 0.45 nm. An average removal rate of 187 nm/min was achieved. Furthermore, the interfacial friction and wear behavior and contact adhesion effect of DMSPs abrasives were also discussed.

Key words:  inorganic non-metallic materials      mesoporous silica      dendritic      particle abrasive      polishing     
Received:  12 February 2019     
ZTFLH:  TB383  
Fund: National Natural Science Foundation of China(51405038);National Natural Science Foundation of China(51575058);National Natural Science Foundation of China(51875052)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.100     OR     https://www.cjmr.org/EN/Y2019/V33/I10/742

Polosher modelTegraForce-1/TrgraPol-15*Pad modelMD-Chem*
Rotation speed of the head120 r/minDown pressure3.3 psi
Rotation speed of the platen90 r/minSlurry pH value8.5**
Flow rate of slurry100 ml/minPolishging time1 min
Dimension of workpiece2.0 cm×2.0 cm***Solid content1% (mass fraction)
Table 1  Experimental parameters of polishing tests
Fig.1  Low-(a) and high-magnification (b) TEM images of DMSPs samples
Fig.2  SEM image (a) and particle size distribution (b) of DMSPs samples
Fig.3  N2 adsorption/desorption isotherms (a) and pore size distributions (b) of DMSPs samples
Fig.4  Wide- and low-angle (inset) XRD patterns of DMSPs samples
Fig.5  Top-view AFM images and sectional profiles of the surfaces (a, b) before and (c, d) after finishing with DMSPs particle abrasives
Fig.6  Three-dimensional AFM images of the surfaces (a) before and (b) after polishing
Fig.7  Surface morphology within 722.1 μm×962.8 μm of the polished surface
[1] Krishnan M, Nalaskowski J W, Cook L M. Chemical mechanical planarization: slurry chemistry, materials, and mechanisms [J]. Chem. Rev., 2010, 110: 178
[2] Mandal S, Thomas E L H, Gines L, Morgan D, et al. Redox agent enhanced chemical mechanical polishing of thin film diamond [J]. Carbon, 2018, 130: 25
[3] Gao S, Huang H, Zhu XL, et al.Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel [J]. Mat. Sci. Semicon. Proc., 2017, 63: 97
[4] Liu D F, Chen G L, Hu Q. Material removal model of chemical mechanical polishing for fused silica using soft nanoparticles [J]. Int. J. Adv. Manuf. Tech., 2017, 88: 3515
[5] Chen A L, Chen Y, Zhao X B ,et al. Core/shell structured PS/mSiO2 hybrid particles: Controlled preparation, mechanical property, and their size-dependent CMP performance [J]. J. Alloy Compd., 2018, 779: 511
[6] Chiu H, G??l D, Haddick L, et al. Clickable multifunctional large-pore mesoporous silica nanoparticles as nanocarriers [J]. Chem. Mater., 2018, 30: 644
[7] Chen A L, Qin J W, Chen Y. Synthesis of mesoporous silica microspheres and their application in chemical mechanical polishing [J]. J. Chin. Ceram. Soc., 2016, 44(9): 1357
[7] 陈爱莲, 秦佳伟, 陈 杨. 介孔氧化硅微球的合成及其在化学机械抛光中的应用 [J]. 硅酸盐学报,2016, 44(9): 1357
[8] Ryu J, Kim W, Yun J ,et al. Fabrication of uniform wrinkled silica nanoparticles and their application to abrasives in chemical mechanical planarization [J]. ACS Appl. Mater. Inter., 2018, 10: 11843
[9] Du X, Zhao C X, Huang H W ,et al. Synthesis of dendrimer-like porous silica nanoparticles and their applications in advanced carrier [J]. Prog. Chem., 2016, 28(8): 1131
[9] 杜 鑫, 赵彩霞, 黄洪伟等. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用 [J].化学进展,2016, 28(8): 1131
[10] Wang Y B, Liu Z, Shi S H ,et al. Research progress of dendritic fibrous nano-silica (DFNS) [J]. J. Inorg. Mater., 2018, 33(12): 1274
[10] 王亚斌, 刘 忠, 史时辉=等. 树枝状纤维形二氧化硅纳米粒子的研究进展 [J]. 无机材料学报, 2018, 33(12): 1274
[11] Shen D, Yang J, Li X, et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres [J]. Nano Lett., 2014, 14: 923
[12] Shen D, Chen L, Yang J ,et al. Ultradispersed palladium nanoparticles in three-dimensional dendritic mesoporous silica nanospheres: Toward active and stable heterogeneous catalysts [J]. ACS Appl. Mater. Inter., 2015, 7: 17450
[13] Chen Y, Lu J X, Chen Z G. Preparation, characterization and oxide CMP performance of composite polystyrene-core ceria-shell abrasives [J]. Microelectron. Eng., 2011, 88: 200
[14] Xue X, Lang W, Yan X ,et al. Dispersed vanadium in three-dimensional dendritic mesoporous silica nanospheres: Active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2 [J]. ACS Appl. Mater. Inter., 2017, 9: 15408
[15] Groen J C, Peffer L A A, Pérez-Ramírez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis [J]. Micropor. Mesopor. Mat., 2003, 60: 1
[16] Pang X L, Ren J, Tang F Q. Effect of temperature on the morphologies and the mesostructure ordering of mesoporous silica [J]. Chin. J. Inorg. Chem., 2005, 21(2): 281
[16] 庞雪蕾, 任 俊, 唐芳琼. 温度对介孔二氧化硅形貌和介相结构有序性的影响 [J]. 无机化学学报, 2005, 21(2): 281
[17] Wang Y G. Experimental and theoretical study on the material removal in the chemical mechanical polishing at molecular scale [D]. Wuxi: Jiangnan University, 2008
[17] 王永光. 基于分子量级的化学机械抛光材料去除机理的理论和试验研究 [D]. 无锡: 江南大学, 2008
[18] Chen Y, Chen A L, Qin J W ,et al. Preparation of submicrometer mesoporous silica microspheres and fitting calculation for elastic moduli [J]. Chin. J. Nonferr. Metal, 2017, 27(6): 1228
[18] 陈 杨, 陈爱莲, 秦佳伟等. 亚微米介孔二氧化硅微球的制备及其弹性模量的拟合计算 [J]. 中国有色金属学报, 2017, 27(6): 1228
[19] Gon?alves W, Morthomas J, Chantrenne P ,et al. Elasticity and strength of silica aerogels: a molecular dynamics study on large volumes [J]. Acta Mater., 2018, 145: 165
[20] Chen R, Jiang R, Lei H ,et al. Material removal mechanism during porous silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation [J]. Appl. Surf. Sci., 2013, 264: 148
[21] Chen R, Wu Y, Lei H ,et al. Study of material removal processes of the crystal silicon substrate covered by an oxide film under a silica cluster impact: Molecular dynamics simulation [J]. Appl. Surf. Sci., 2014, 305: 609
[22] Mo Y, Turner K T, Szlufarska I. Friction laws at the nanoscale [J]. Nature, 2009, 457: 1116
[23] Wang Y G, Zhu Y, Zhao D ,et al. Nanoscratch of aluminum in dry, water and aqueous H2O2 conditions [J]. Appl. Surf. Sci., 2019, 464: 229
[24] Kawaguchi K, Ito H, Kuwahara T ,et al. Atomistic mechanisms of chemical mechanical polishing of a Cu surface in aqueous H2O2: Tight-binding quantum chemical molecular dynamics simulations [J]. ACS Appl. Mater. Inter., 2016, 8: 11830
[25] Wen J, Ma T, Zhang W ,et al. Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2: ReaxFF reactive molecular dynamics simulations [J]. Comp. Mater. Sci., 2017, 131: 230
[26] Qi Y, Chen L, Jiang S ,et al. Investigation of silicon wear against non-porous and micro-porous SiO2 spheres in water and in humid air [J]. RSC Advances, 2016, 6: 89627
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!