Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (8): 631-640    DOI: 10.11901/1005.3093.2017.543
ARTICLES Current Issue | Archive | Adv Search |
Accelerated Indoor Corrosion of Galvanized Steel in a Simulated Atmospheric Environment of Guangzhou Area
Jin WANG1, Qingdan HUANG1, Jing LIU1, Yaru ZHANG1, Chuang QIAO2, Long HAO3, Junhua DONG3(), Wei KE3
1 Electric power test and Research Institute, Guangzhou Power Supply Co. Ltd. (GZPS), Guangzhou 510410, China
2 College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
3 Environmental Corrosion Center of Materials, Institute of Metal Research,
Cite this article: 

Jin WANG, Qingdan HUANG, Jing LIU, Yaru ZHANG, Chuang QIAO, Long HAO, Junhua DONG, Wei KE. Accelerated Indoor Corrosion of Galvanized Steel in a Simulated Atmospheric Environment of Guangzhou Area. Chinese Journal of Materials Research, 2018, 32(8): 631-640.

Download:  HTML  PDF(5189KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion kinetics and corrosion product of galvanized steel, which is widely used for making power transmission tower, in a simulated atmosphere of Guangzhou area were investigated by means of wet/dry-cyclic corrosion test (CCT), scanning electron microscopy (SEM), X-ray diffractometer (XRD) and Raman spectroscopy (Raman). Results indicate that, under the present simulated conditions, the corrosion weight loss of galvanized steel after 120 cycles test by CCT is equivalent to that of the same steel exposed to the atmosphere at a designed test site at Guangzhou area for 6 months. The corrosion process of the CCT test can be divided into two stages, and the corrosion rate in the early corrosion stage is relatively higher and the corrosion product scale is thin, loose and porous with poor adhesion to the matrix. With the progress of corrosion, the corrosion rate decreases obviously, and the corrosion product scale gradually becomes thicker and compact with good adhesion to the matrix, while an inner rust layer emerges. In addition, the corrosion product of the Zn-coating consists of ZnO, Zn(OH)2, ZnCO3, ZnSO4, Zn5(OH)6(CO3)2, Zn4(OH)6SOxH2O, Zn5(OH)8Cl2, and Zn12(OH)15Cl3(SO4)3, however, which present rather low crystallization degree. As the corrosion process proceeds, among others, the proportion of stable phases of Zn4SO4(OH)xH2O and Zn5(OH)6(CO3)2 increases, while that of the unstable phase of Zn12(OH)15Cl3(SO4)3 decreases.

Key words:  materials failure and protection      electricity transmission tower      galvanized steel      hot-dip Zn coating      atmospheric corrosion      SO2      Cl-     
Received:  13 September 2017     
ZTFLH:  TG146.2  
Fund: Supported by Research Program of Corrosion Distribution and Anti-corrosion Measures of Power Transmission in Complex Atmospheric Environment of Large Coastal Cities (No. GZM2014-2-0004)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.543     OR     https://www.cjmr.org/EN/Y2018/V32/I8/631

Item SO42-/mg·L-1 Cl-/mg·L-1 pH Rainfall/mm Temperature/℃ RH/%
Value 5.66 2.01 5.77 1746 22.9 83
Table 1  Annual average analysis results of Guangzhou rainfall
Composition Deposition rate Concentration Concentrating times number Reference/Data processing method
/mg·dm-2·d-1 /mg·L-1
NaCl 0.024 16.48 5 Cl- deposition rate in Guangzhou city ,obtained from China natural environment corrosion web
Na2SO3 11.69 95.95 5 SO2 deposition rate was calculated by interpolation method, according to the relationship between the SO2 concentration in air and its deposition rate, and the SO2 concentration in Table 1 (GB/T 19292.1-2003 appendix A, Table A.1) [14]
Na2CO3 / 546.69 1 Calculated from the natural dissolved equilibrium of CO2 in water at standard atmospheric pressure
Room temperature, pH = 5.77 Obtained from the annual average analysis results of rainfall of Guangzhou environmental data
Table 2  Electrolyte composition of the indoor simulated accelerating corrosion test and the data resources
Fig.1  Thickness loss of hot-dip Zn coating in filed exposure environment
Fig.2  Thickness loss and corrosion rate of hot-dip Zn coating in simulated atmospheric environment
Fig.3  Surface and cross-sectional morphologies of corroded hot-dip Zn coating after CCT for (a), (b) 20 cycles; (c), (d) 40 cycles; (e), (f) 120 cycles, respectively
Fig.4  SEM observations of corrosion products on corroded hot-dip Zn coating. (a) corrosion product with different shapes at 10 cycles; (b) lamellar corrosion product after 60 cycles; (c) locally amplified morphology of sponge ball-like corrosion products after 60 cycles; (d) lamellar structure at corrosion pitting and cracking after 90 cycles
Fig.5  EDX characterizations of the corrosion products on galvanized steel. (a) nodular-like corrosion product; (b) filamentary-like corrosion product; (c) lamellar corrosion product
Fig.6  X-ray diffraction patterns of the corroded hot-dip Zn coating after different corrosion durations
Fig.7  Raman spectrum of the corroded hot-dip Zn coating after corrosion of 120 cycles
[1] Chen Y, Xu L M, Yao N N, et al.Atmospheric corrosion and protection of steel components for transmission and distribution projects[J]. North China Electr. Power, 2014, (12): 10(陈云, 徐利民, 药宁娜等. 输变电钢构件的大气腐蚀与防护[J]. 华北电力技术, 2014, (12): 10)
[2] Mo Z L, Cheng Z Y.Corrosion and prevention of zinc deposit of transmission towers[J]. Electr. Power Constr., 2004, 25(1): 22(默增禄, 程志云. 输电线路杆塔的腐蚀与防治对策[J]. 电力建设, 2004, 25(1): 22)
[3] Liu F, Song H Q, Huang Z R, et al.Anti-corrosion properties of protective coatings for transmission line iron tower in coastal area[J]. Equip. Environ. Eng., 2015, 12(4): 76(刘峰, 宋弘清, 黄政然等. 沿海地区输电铁塔防护涂层耐腐蚀性能研究[J]. 装备环境工程, 2015, 12(4): 76)
[4] Yuan H J, Zhang J X, Ji X W, et al.Corrosion behavior of galvanized steel for power transmission tower in polluted environment[J]. Corros. Sci. Prot. Technol., 2013, 25: 13(原徐杰, 张俊喜, 季献武等. 电力输电杆塔用镀锌钢在污染环境中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2013, 25: 13)
[5] Chen T, Tan T, Hong Y C, et al.Corrosion and protection of hot-dipped components in power transmission grid[J]. Electr. Power, 2013, 46(11): 1(陈彤, 谈天, 洪毅成等. 输电网镀锌金属部件的腐蚀与防护[J]. 中国电力, 2013, 46(11): 1)
[6] Wang P, Sun X L, Ma D W.Investigation and analysis of atmospheric corrosion in power transmission and transformation equipment[J]. Corros. Sci. Prot. Technol., 2012, 24: 525(王平, 孙心利, 马东伟. 输变电设备大气腐蚀情况调查与分析[J]. 腐蚀科学与防护技术, 2012, 24: 525)
[7] Liu X.Research on the destruction caused by stress corrosion to the galvanized steel coating of electric power tower [D]. Ji’nan: Shandong University, 2015(刘霄. 输电线杆塔镀锌钢镀层应力腐蚀破坏研究 [D]. 济南: 山东大学, 2015)
[8] Ma D W, Wang P, Ren H T.Corrosion and protection technology of transmission line iron tower by the sea[J]. Total Corros. Control, 2013, 27(11): 37(马东伟, 王平, 任汉涛. 滨海输变电线路铁塔腐蚀与防护技术探讨[J]. 全面腐蚀控制, 2013, 27(11): 37)
[9] Liu L R, Yong X Y, Guo F Y.Research on the corrosion of metallic components of overhead contact system in typical atmospheric environment[J]. J. Railway Eng. Soc., 2015, (3): 81(刘莉蓉, 雍兴跃, 郭奉迎. 电气化接触网零部件在典型环境的腐蚀研究[J]. 铁道工程学报, 2015, (3): 81)
[10] Zhang J J.Analysis of anticorrosion mechanism and characteristics of hot-dip galvanizing strip[J]. Sci. Guide, 2014, (7): 167(张晶晶. 热镀锌带防腐机理与特点浅析[J]. 科技导报, 2014, (7): 167)
[11] Ke W.Investigation Report on Corrosion in China [M]. Beijing: Chemical Industry Press, 2003(柯伟. 中国腐蚀调查报告 [M]. 北京: 化学工业出版社, 2003)
[12] Zhang H, Du C W, Li X G, et al.Effect of pH on electrochemical corrosion behavior of hot galvanized and IF steel substrates in NaCl solution [A]. The 11st Annual Conference on Corrosion Resistant Metal Materials Symposium[C]. Baotou: Chinese Society for Corrosion and Protection, 2008(张红, 杜翠薇, 李晓刚等. pH值对热镀锌汽车板和IF钢基板在NaCl溶液中电化学腐蚀行为的影响 [A]. 中国腐蚀与防护学会第十一届耐蚀金属材料学术年会论文集[C]. 包头: 中国腐蚀与防护学会, 2008)
[13] Kong G, Lu J T, Che C S, et al.Analyses of formation of white rust on hot dip galvanized steel and relevant countermeasures[J]. Corros. Prot., 2005, 26: 450(孔纲, 卢锦堂, 车淳山等. 热镀锌钢白锈产生原因分析及预防[J]. 腐蚀与防护, 2005, 26: 450)
[14] ISO9223. Corrosion of metals and alloys-classification of the corrosivity of atmospheres[S].
[15] ISO9224. Corrosion of metals and alloys-guiding values for the corrosivity of atmospheres[S].
[16] ISO9225. Corrosion of metals and alloys-aggressively of atmoshpheres-methods of measurement of pollution data[S].
[17] ISO9226. Corrosion of metals and alloys-corrosivity of atmoshpheres-methods of determination of corrosion rate of standard speciments for the evaluation of corrosivity[S].
[18] Yuan X H, Zhang Q F.Electrochemical analysis of the phase structures of galvannealed coatings [A]. The 6th China Corrosion Conference[C]. Beijing, 2011
[19] Hao L, Zhang S X, Dong J H, et al.Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere[J]. Corros. Sci., 2012, 59: 270
[20] Shang X L.Influences of Mn and Sb elements on the corrosion behaviour of zinc [D]. Shenyang: Institute of Metal Research Chinese Academy of Sciences, 2012(尚秀玲. 锰和锑元素对锌腐蚀的影响及其机理研究 [D]. 沈阳: 中国科学院金属研究所, 2012)
[21] Shi H R, Wei W J, Ding Y, et al.Microstructures and salt spray corrosion behaviors of hot-dip Zn and 55Al-Zn coatings[J]. Mater. Prot., 2002, 35(3): 35(石焕荣, 魏无际, 丁毅等. 热镀锌和锌铝合金镀层的微观组织及盐雾腐蚀行为[J]. 材料保护, 2002, 35(3): 35)
[22] Zhang D L, Li Y.Effect of humidity on hydrogen embrittlement susceptivity of hot-dip galvanized steel exposed to simulated marine atmosphere[J]. Chin. J. Nonferr. Met., 2010, 20: 476(张大磊, 李焰. 湿度对热镀锌钢材在海洋大气环境中氢脆敏感性的影响[J]. 中国有色金属学报, 2010, 20: 476)
[23] Zhang D L, Wang W, Li Y.Wire beam electrode technique for investigating galvanic corrosion behavior of hot-dip galvanized steel-scratch defect[J]. Chin. J. Mater. Res., 2009, 23: 343(张大磊, 王伟, 李焰. 热镀锌钢材的电偶腐蚀行为-划痕型缺陷[J]. 材料研究学报, 2009, 23: 343)
[24] Shi Y Y, Zhang Z, Zhang J Q, et al.Review of atmospheric corrosion of zinc and zinc alloy[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 373(施彦彦, 张昭, 张鉴清等. 锌及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2005, 25: 373)
[25] Friel J J.Atmospheric corrosion products on Al, Zn, and AlZn metallic coatings[J]. Corrosion, 1986, 42: 422
[26] Flinn D R, Cramer S D, Carter J P, et al.ACS symposium series 318 [A]. Baboian R. Materials Degradation Caused by Acid Rain[M]. Washington D.C.: American Chemical Society, 1986: 119
[27] Odnevall I, Westdahl M.Zinc chlorohydroxosulfates: Newly-discovered corrosion products on zinc. Structure determination of NaZn4Cl(OH)6SO4·6H2O and x-ray study of Zn4Cl2(OH)4SO4·5H2O[J]. Corros. Sci., 1993, 34:1231
[28] Odnevall I, Leygraf C.Formation of NaZn4Cl(OH)6SO4·6H2O in a marine atmosphere[J]. Corros. Sci., 1993, 34:1213
[29] Odnevall I, Leygraf C.A comparison between analytical methods for zinc specimens exposed in a rural atmosphere[J]. J. Electrochem. Soc., 1991, 138: 1923
[30] Odnevall I, Leygraf C.The formation of Zn4Cl2(OH)4SO4·5H2O in an urban and an industrial atmosphere[J]. Corros. Sci., 1994, 36: 1551
[31] Hales M C, Frost R L.Synthesis and vibrational spectroscopic characterisation of synthetic hydrozincite and smithsonite[J]. Polyhedron, 2007, 26: 4955
[32] Bernard M C, Hugot-Le Goff A, Massinon D, et al. Underpaint corrosion of zinc-coated steel sheet studied by in situ raman spectroscopy[J]. Corros. Sci., 1993, 35: 1339.
[33] Teeters D, Frech R.Raman and infrared reflectivity spectra of 6LiNaSO4 and 7LiNaSO4[J]. J. Chem. Phys., 1982, 76: 799
[34] Secco E A.Infrared spectra of LiNaSO4[J]. J. Chem. Phys., 1983, 79: 5208
[35] Cazzanelli E, Frech R.Raman spectra of 7Li2SO4 and 6Li2SO4[J]. J. Chem. Phys., 1983, 79: 2615
[36] Jayasree R S, Mahadevan Pillai V P, Nayar V U, et al. Raman and infrared spectral analysis of corrosion products on zinc NaZn4Cl-(OH)6SO4·6H2O and Zn4Cl2(OH)4SO4·5H2O[J]. Mater. Chem. Phys., 2006, 99: 474
[37] Yang W Q, Liu H Z, Wang P, et al.Study on anti-corrosion property of different kinds of galvanized steel sheet[J]. Total Corros. Control, 2015, 29(5): 28(杨文谦, 刘翰志, 王鹏等. 不同种类镀锌板抗腐蚀性能研究[J]. 全面腐蚀控制, 2015, 29(5): 28)
[38] Zhang X G.Translated by Zhong H F, Cheng D M. Electrochemical Corrosion of Zinc [M]. Beijing: Metallurgical Industry Press, 2008(章小鸽著. 仲海峰, 程东妹译. 锌的腐蚀与电化学 [M]. 北京: 冶金工业出版社, 2008)
[39] Biestek T, Drys M, Sokolov N, et al.Atmospheric corrosion of metallic systems. Part V. Identification of the chemical compounds in the corrosion products of zinc[J]. Zashch. Met., 1983, 19: 750
[40] Liu J, Huang Q D, Zhang Y R, et al.Atmospheric corrosion of hot-dip Zn coating on transmission tower and the corrosion influencing factors[J]. Corros. Sci. Prot. Technol., 2016, 28: 570(刘静, 黄青丹, 张亚茹等. 输电杆塔用热浸镀锌的大气腐蚀及影响因素[J]. 腐蚀科学与防护技术, 2016, 28: 570)
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[10] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[11] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[12] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[13] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[14] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
[15] Dan ZHANG,Zhenyao WANG. Corrosion Behavior of Zinc Exposed to Salt Lake Area for 48 Months[J]. 材料研究学报, 2019, 33(8): 603-613.
No Suggested Reading articles found!