Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (8): 625-630    DOI: 10.11901/1005.3093.2018.169
ARTICLES Current Issue | Archive | Adv Search |
Self-healing and Swelling Kinetics of a New Polyacrylic Acid Hydrogels
Qin YANG1(), Chunjuan FANG1, Na ZHAO1, Junkai ZHAO1, Wendong WANG2
1 School of Science , Xi'an University of Architecture and Technology, Xi'an 710055, China
2 School of Environment, Xi'an University of Architecture and Technology, Xi'an 710055, China
Cite this article: 

Qin YANG, Chunjuan FANG, Na ZHAO, Junkai ZHAO, Wendong WANG. Self-healing and Swelling Kinetics of a New Polyacrylic Acid Hydrogels. Chinese Journal of Materials Research, 2018, 32(8): 625-630.

Download:  HTML  PDF(1284KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A self-healing CB[7]/PAA hydrogel was prepared with acrylic acid (AA), H2O, cucurbituril[7] (CB[7]), potassium persulfate (KPS) and NaCl as raw materials. The self-healing process of CB [7]/PAA hydrogel was investigated by means of FT-IR and 1H NMR techniques. Results show that the hydrogel networks formed during the self-healing of CB [7]/PAA hydrogel are mainly induced by the existence of multiple hydrogen bonds, and after the self-healing, the maximum tensile elongation of CB[7]/PAA hydrogel can reach about 1.73 times of that of the as prepared ones. Within a range of low AA content, the swelling and swelling rate of the hydrogel increase with the increasing AA content, while in a range of high AA content, the swelling and the swelling rate decreases with the increasing AA content; the swelling and swelling rate of the hydrogel in the aqueous solution of pH=7.6 were obviously higher than those in the aqueous solution of pH=10.0 and pH=4.0. The kinetic index n, rate constant K and water diffusion coefficient D of CB[7]/PAA hydrogel were acquired corresponding to non-Fickian diffusion mode. It follows that the swelling of CB [7]/PAA hydrogel is in accordance with the non-Fickian diffusion mode, and the diffusion rate of water molecules is comparable to that of the relaxation rate of chain segments in the hydrogel.

Key words:  functional polymer materials      self-healing      hydrogen bond      swelling dynamics     
Received:  24 February 2018     
ZTFLH:  O632.51  
Fund: Supported by Scientific Research Program Funded of Shaanxi Provincial Education Department (No. 17JK0432) and the Science and Technology Overall Plan of Shaanxi Province (No. 2016KTCG01-17)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.169     OR     https://www.cjmr.org/EN/Y2018/V32/I8/625

Fig.1  FT-IR spectra of the PAA hydrogel and CB[7]/PAA hydrogel
Fig.2  1H NMR spectra of CB[7]/PAA hydrogel
Fig.3  Schematic illustration of self-healing of CB[7]/PAA hydrogel
Fig.4  Swelling kinetics curves of CB[7]/PAA hydrogel with different acrylic content at pH=7.6
Fig.5  Curves of swelling rate of AA with different acrylic content on the CB[7]/PAA hydrogel
Fig.6  Swelling kinetics curves of CB[7]/PAA hydrogel (AA=1.2 mL) content in the different pH
Fig.7  Swelling curves of CB[7]/PAA hydrogel (AA=1.2 mL) varies with time
pH Sample n K D
4.0 AA1mL 0.5878 0.0095 0.0834
AA1.1mL 0.6779 0.0075 0.0953
AA1.2mL 0.5438 0.0035 0.1105
AA1.3mL 0.5657 0.0117 0.0782
AA1.4mL 0.5714 0.0129 0.0723
7.6 AA1mL 0.7478 0.0018 0.1023
AA1.1mL 0.6991 0.0027 0.1097
AA1.2mL 0.6510 0.0039 0.1278
AA1.3mL 0.5721 0.0109 0.0865
AA1.4mL 0.5834 0.0113 0.0813
10.0 AA1mL 0.5769 0.0082 0.0967
AA1.1mL 0.5866 0.0070 0.1024
AA1.2mL 0.5096 0.0046 0.1201
AA1.3mL 0.5789 0.0098 0.0985
AA1.4mL 0.5964 0.0108 0.0876
Table 1  Kinetic index, hydrogel rate constant and water diffusion coefficient of CB[7]/PAA hydrogel under different conditions
Fig.8  Schematic illustration of self - healing of CB[7]/PAA hydrogel mechanism
[1] White S R, Sottos N R, Geubelle P H, et al.Autonomic healing of polymer composites[J]. Nature, 2001, 409: 794
[2] White S R, Moore J S, Sottos N R, et al.Restoration of large damage volumes in polymers[J]. Science, 2014, 344: 620
[3] Ahn B K, Lee D W, Israelachvili J N, et al.Surface-initiated self-healing of polymers in aqueous media[J]. Nat. Mater., 2014, 13: 867
[4] Haldar U, Bauri K, Li R, et al.Polyisobutylene based pH-responsive self-healing polymeric gels[J]. ACS Appl. Mater. Interfaces, 2015, 7: 8779
[5] Banerjee S L, Khamrai M, Kundu P P, et al.Synthesis of a self-healable and pH responsive hydrogel based on an ionic polymer/clay nanocomposite[J]. RSC Adv., 2016, 6(85): 81654
[6] Ding D, Guerette P A, Fu J, et al.From soft self-healing gels to stiff films in suckerin-based materials through modulation of crosslink density and β-sheet content[J]. Adv. Mater., 2015, 27(26): 3953
[7] Wool R P.Self-healing materials: a review[J]. Soft Matter., 2008, 4(4): 400
[8] Shi Y, Wang M, Ma C B, et al.A conductive self-healing hybrid gel enabled by metal-ligand supramolecule and nanostructured conductive polymer[J]. Nano Lett., 2015, 15: 6276
[9] Cordier P, Tournilhac F, Soulié-Ziakovic C, et al.Self-healing and thermoreversible rubber fromSupra-molecular assembly[J]. Nature, 2008, 451: 977
[10] Montarnal D, Cordier P, Soulé-Ziakovic C, et al.Synthesis of self-healing supramolecular rubbers from fatty acid derivatives, diethylene triamine, and urea[J]. J. Polym. Sci. Part Polym. Chem., 2008, 46A: 7925
[11] Montarnal D, Tournilhac F, Hidalgo M, et al.Versatile one-pot synthesis of supramolecular plastics and self-healing rubbers[J]. J. Am. Chem. Soc., 2009, 131: 7966
[12] Blaiszik B J, Kramer S L B,Grady M E, et al.Autonomic restoration of electrical conductivity[J]. Adv. Mater., 2012, 24: 398
[13] Ahn B K, Lee D W, Israelachvili J N, et al.Surface-initiated self-healing of polymers in aqueous media.[J]. Nature Mater., 2014, 13(9): 867
[14] Phadke A, Zhang C, Arman B, et al.Rapid self-healing hydrogels[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12): 4383
[15] Wang F P, Zhang J Y, Mou H P, et al.Swelling kinetics and theophylline controlled-release properties of pH-sensitive P (AM-AA-co-C8PhEO10Ac) hydrogel[J]. J. Funct. Polym., 2013, 26: 179(王芳平, 张珺瑛, 牟琥珀等. pH敏感性P(AM-AA-co-C8PhEO10-Ac)水凝胶溶胀动力学及其对茶碱的控释[J]. 功能高分子学报, 2013, 26: 179)
[16] Billiet T, Vandenhaute M, Schelfhout J, et al.A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering[J]. Biomaterials, 2012, 33: 6020
[17] Yang Q, Li X L, Jiang Y, et al.Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils[J]. Mater. Res. Innov., 2014, 18: 280
[18] Zhou J N.Preparation of chitosan/gelatin composite microspheres and study on its drug release property [D]. Xiangtan: Hunan University of Science and Technology, 2012(周佳男. 壳聚糖/明胶复合微球的制备及载药性能研究 [D]. 湘潭: 湖南科技大学, 2012)
[19] Shi Y L.Study on the preparation, structure and properties of pH/temperature-sensitive natural polymer hydrogels [D]. Shanghai: Donghua University, 2005(石艳丽. 温度及pH敏感天然高分子水凝胶的制备及结构性能表征 [D]. 上海: 东华大学, 2005)
[20] Zhang Y N, Wu S W, Xu J Y, et al.Preparation and performance characterization of electrospun drug loaded poly (vinyl alcohol)/chitosan nanofibrous membrane[J]. J. Zhejiang Univ.(Med. Sci.), 2013, 42: 644(章亚妮, 邬珊维, 徐佳瑶等. 聚乙烯醇/壳聚糖载药电纺纤维膜的制备及性能表征[J]. 浙江大学学报(医学版), 2013, 42: 644)
[21] Long R, Mayumi K, Creton C, et al.Time dependent behavior of a dual cross-link self-healing gel: Theory and experiments[J]. Macromolecules, 2014, 47: 7243
[22] Lei G C.Formation and control of porous structure of acrylate super-absorbent resin micro-spheres and mechanism research of pore-forming [D]. Xiamen: Xiamen University, 2009(雷光财. 丙烯酸系高吸水性树脂微球多孔结构的形成/控制及成孔机理研究 [D]. 厦门: 厦门大学, 2009)
[1] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[2] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[3] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
[4] YANG Qin, ZHAO Weijie, ZHAO Na, WANG Ruodi, CHEN Cheng. Preparation and Properties of a Novel AG/PVA/CB[7] Hydrogel Reinforced by Microcrystalline and Hydrogen Bonds[J]. 材料研究学报, 2020, 34(9): 691-696.
[5] DUAN Tigang, HUANG Guosheng, MA Li, PENG Wenshan, ZHANG Wei, XU Likun, LIN Zhifeng, HE Hua, BI Tieman. Construction and Anti-corrosion Performance of a Self-healing Coating on Ni-Co Plating/Q235 Carbon Steel[J]. 材料研究学报, 2020, 34(10): 777-783.
[6] Xia HE, Fei WANG, Hanwen ZHAO, Yanping WANG, Libang FENG. Preparation and Healing Behavior of Self-healing Epoxy Resins Based on Diels-Alder Reaction[J]. 材料研究学报, 2019, 33(8): 635-640.
[7] WANG Xingang,WANG Xingjing,XIA Long,XU Wei. Wave-Absorption Properties of Epoxy /Ethyl Cellulose Microcapsule Modified by Carbonyl Iron Powder[J]. 材料研究学报, 2019, 33(11): 824-830.
[8] Wenyu WANG, Yamin LIU, Xin JIN, Changfa XIAO, Zhengtao ZHU, Tong LIN. Effect of Polypyrrole Modified Carbon Fiber on Interfacial Property of Composite PPy-carbon Fiber/epoxy[J]. 材料研究学报, 2018, 32(3): 209-215.
[9] LI Mingchun XIN Meihua LI Zhonghuang MAO Yangfan. The Effect of Acyl Sidechain on the Hydrogen Bonds in O–acylated Oligochitosan/PLLA Blend Films[J]. 材料研究学报, 2011, 25(4): 337-341.
[10] ZHANG Weigang; CHENG Huiming; SHEN Zuhong; ZHOU Benlian; ZHOU Longjiang(Institute of Metal Research; The Chinese Academy of Sciences International Centre for Materials Physics; CAS; Institute of Corrosion and Protection br Metals; CAS). SELF-HEALING BEHAVIOR OF NANO-CERAMICS/CARBON COMPOSITES DURING OXIDATION[J]. 材料研究学报, 1997, 11(5): 487-490.
[11] RONG Minzhi; ZENG Hanmin(Materials Science Institute; Zhongshan University). STUDY ON THE STRUCTURE AND PROPERTIESOF CROSSLINKED EPOXY RESINS MODIFIEDWITH POLYCARBONATE(PC)[J]. 材料研究学报, 1994, 8(2): 169-176.
No Suggested Reading articles found!