Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (8): 575-583    DOI: 10.11901/1005.3093.2017.675
ARTICLES Current Issue | Archive | Adv Search |
Effect of Mo/Nb/Ti/Zr Minor-alloying on the Second-phase Precipitation and Microhardness in Fe-Cl-Al Stainless Steels
Zhenhua WANG1, Donghui WEN1, Yang LV1, Jiamiao HAO1, Qing WANG1(), Yu XU2
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education) & School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China;
2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610213, China
Cite this article: 

Zhenhua WANG, Donghui WEN, Yang LV, Jiamiao HAO, Qing WANG, Yu XU. Effect of Mo/Nb/Ti/Zr Minor-alloying on the Second-phase Precipitation and Microhardness in Fe-Cl-Al Stainless Steels. Chinese Journal of Materials Research, 2018, 32(8): 575-583.

Download:  HTML  PDF(6320KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of the minor addition of Mo, Nb, Ti, and Zr on the second-phase precipitation and microhardness of Fe-Cr-Al serial alloys were investigated. Ternary composition of [Al-(Fe12Cr2)](Al0.5Cr0.5) was first determined by the cluster formula approach, based on which a minor amount of alloying elements was added to form new alloys. Alloy ingots were prepared by vacuum arc melting, then solid-solution treated at 1200℃ for 2 h, and finally hot-rolled at 800℃ into plates. The plates were further aged at 800℃ for 24 h. The designed alloys were characterized by means of XRD analysis, OM , SEM and microhardness tester. Results showed that both the type and quantity of minor-alloying elements affect the second-phase precipitation. Specifically, when the atomic ratio of Mo:Nb=2:1 the second-phase particles presented as fine precipitates and distributed uniformly in the ferritic matrix, which results in the higher hardness of about 250 HV. While the addition of Ti decreases the volume fraction of precipitated particles in Mo/Nb/Ti-modified alloy obviously, in which the particle size is increased slightly, corresponding to the lower microhardness about 240 HV. The addition of Zr accelerates the segregation of precipitates and coarsens the particle size, but the Mo/Nb/Ti/Zr-modified alloy still showed a relatively-higher microhardness (about 246 HV).

Key words:  metallic materials      ferritic stainless steels      Fe-Cr-Al-based alloys      micro-alloying      second-phase precipitation     
Received:  16 November 2017     
ZTFLH:  TG142  
Fund: Supported by Foundation of Science and Technology on Reactor Fuel and Materials Laboratory of Nuclear Power Institute of China (No. ZX20150498);National Key Research and Development Plans (No. 2017YFB0702400);International Thermonuclear Experimental Reactor Program of China (No. 2015GB121004);International Science & Technology Cooperation Program of China (No. 2015DFR60370);State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials of Guangxi University (No. GXKFJ16-11)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.675     OR     https://www.cjmr.org/EN/Y2018/V32/I8/575

No. Formula Composition/atomic fraction, % Composition/mass fraction, %
1 Al1.5-Fe12-[Cr8(Mo2Nb)1]2.5 Fe75Al9.38Cr13.89Mo1.16Nb0.58 Fe78.61Al4.75Cr13.55Mo2.08Nb1.01
2 Al1.5-Fe12-[Cr8(MoNb)1]2.5 Fe75Al9.38Cr13.89Mo0.87Nb0.87 Fe78.62Al4.75Cr13.56Mo1.56Nb1.51
3 Al1.5-Fe12-[Cr8(Mo2(NbTi)1)1]2.5 Fe75Al9.38Cr13.89Mo1.16Ti0.29Nb0.29 Fe78.80Al4.76Cr13.59Mo2.09Ti0.26Nb0.50
4 Al1.5-Fe12-[Cr8(Mo2(TiZr)1)1]2.5 Fe75Al9.38Cr13.89Mo1.16Ti0.29Zr0.29 Fe78.80Al4.76Cr13.59Mo2.09Ti0.26Zr0.50
5 Al1.5-Fe12-[Cr8(Mo2(NbTiZr)1)1]2.5 Fe75Al9.38Cr13.89Mo1.16Nb0.19Ti0.19Zr0.19 Fe78.74Al4.75Cr13.58Mo2.09Nb0.34Ti0.17Zr0.33
Table 1  Compositions of Fe-Cr-Al-M (M=Mo, Nb, Ti, Zr) alloys, including cluster formula, atomic percent (atomic fraction, %) and weight percent (mass fraction, %)
Fig.1  CN14 rhombic-dodecahedron cluster in BCC structure, in which the yellow sphere represents the cluster center, and the cluster shell is constituted of eight blue spheres on the 1st-neighbor and six green spheres on the 2nd-neighbor
Fig.2  XRD patterns of the Mo/Nb/Ti/Zr-alloyed Fe-Cr-Al alloys after solid solution (a) and OM micrographs of the Mo/Nb-alloyed alloy (No.1) after solid solution (b) and hot-rolling (c)
Fig.3  SEM back-scattering images of the Mo/Nb/Ti/Zr alloyed Fe-Cr-Al serial alloys after hot-rolling (a): No. 1, (b): No. 2, (c): No. 3, (d): No. 4, and (e): No. 5
Fig.4  XRD patterns of the Mo/Nb/Ti/Zr-alloyed Fe-Cr-Al alloys after 800℃/24 h aging
Fig.5  OM micrographs and SEM back-scattering images of the Mo/Nb/Ti/Zr-alloyed Fe-Cr-Al serial alloys after 800℃/24 h aging (a): No.1, (b): No.2, (c): No.3, (d): No.4, and (e): No.5
Fe Cr Al Mo Nb Zr Ti
No.1 59.7±2.0 11.2±0.6 6.5±0.4 5.5±0.6 17.1±0.7
No.2 56.5±1.6 10.3±0.5 5.9±0.4 7.8±0.5 19.5±0.7
No.3 66.4±2.1 12.9±0.6 8.5±0.5 4.6±0.5 5.9±0.4 1.7±0.2
No.4 37.2±1.0 5.2±0.4 2.2±0.3 55.4±1.1
No.5 50.1±1.7 8.8±0.4 5.3±0.3 1.6±0.3 2.4±0.5 31.4±1.1 0.4±0.2
Table 2  Composition (%, atomic fraction) of the Mo/Nb/Ti/Zr-alloyed Fe-Cr-Al serial alloys after 800℃/24 h aging measured by SEM-EDS
Fig.6  Volume fractions of the second phase particles of the aged Mo/Nb/Ti/Zr-alloyed Fe-Cr-Al alloys
Fig.7  Microhardness HV of Mo/Nb/Ti/Zr alloyed Fe-Cr-Al serial alloys under hot-rolling and aging states
[1] Cockeram B V, Leonard K J, Byun T S, et al.Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 377~440℃[J]. J. Nucl. Mater., 2014, 449: 69
[2] Azevedo C R F. Selection of fuel cladding material for nuclear fission reactors[J]. Eng. Fail. Anal., 2011, 18: 1943
[3] Rebak R B.Alloy selection for accident tolerant fuel cladding in commercial light water reactors[J]. Metall. Mater. Trans., 2015, 2E: 197
[4] Wu X, Kozlowski T, Hales J D.Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Ann. Nucl. Energy, 2015, 85: 763
[5] George N M, Terrani K, Powers J, et al.Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors[J]. Ann. Nucl. Energy, 2015, 75: 703
[6] Pint B A, Terrani K A, Brady M P, et al.High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J]. J. Nucl. Mater., 2013, 440: 420
[7] Cheng T, Keiser J R, Brady M P, et al.Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J]. J. Nucl. Mater., 2012, 427: 396
[8] Qu H P, Lang Y P, Yao C F, et al.The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe-Cr-Al-REM ferritic stainless steel sheets[J]. Mater. Sci. Eng., 2013, 562A: 9
[9] Stott F H, Wood G C, Stringer J.The influence of alloying elements on the development and maintenance of protective scales[J]. Oxid. Met., 1995, 44: 113
[10] Yamamoto Y, Pint B A, Terrani K A, et al.Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. J. Nucl. Mater., 2015, 467: 703
[11] Field K G, Gussev M N, Yamamoto Y, et al.Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications[J]. J. Nucl. Mater., 2014, 454: 352
[12] Capdevila C, Chao J, Jimenez J A, et al.Effect of nanoscale precipitation on strengthening of ferritic ODS Fe-Cr-Al alloy[J]. Mater. Sci. Technol., 2013, 29: 1179
[13] Zhang J Z, Wen D H, Jiang B B, et al.Effects of Ta and Zr minor-alloying on the high-temperature microstructural stability of Fe-Cr-Al-based ferritic stainless steels[J]. Chin. J. Mater. Res., 2017, 31: 336(张军政, 温冬辉, 姜贝贝等. 微量Ta和Zr对Fe-Cr-Al系不锈钢高温组织稳定性的影响[J]. 材料研究学报, 2017, 31: 336)
[14] Bania P J.Beta titanium alloys and their role in the titanium industry[J]. JOM, 1994, 46(7): 16
[15] Barbangelo A.Influence of alloying elements and heat treatment on impact toughness of chromium steel surface deposits[J]. J. Mater. Sci., 1990, 25: 2975
[16] Hume-Rothery W.Atomic diameters, atomic volumes and solid solubility relations in alloys[J]. Acta Metall., 1966, 14: 17
[17] Zhu W H, Wang R S, Shu G G, et al.First-principles study of the structure, mechanical properties, and phase stability of crystalline zirconia under high pressure[J]. Struct. Chem., 2012, 23: 601
[18] Pang C, Jiang B B, Shi Y, et al.Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)x, for BCC solid solution alloys[J]. J. Alloys Compd., 2015, 652: 63
[19] Wang Q, Ji C J, Wang Y M, et al.β-Ti alloys with low Young's moduli interpreted by cluster-plus-glue-atom model[J]. Metall. Mater. Trans., 2013, 44A: 1872
[20] Pang C, Wang Q, Zhang R Q, et al.β Zr-Nb-Ti-Mo-Sn alloys with low Young's modulus and low magnetic susceptibility optimized via a cluster-plus-glue-atom model[J]. Mater. Sci. Eng., 2015, 626A: 369
[21] Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40: R273
[22] Ma Y, Wang Q, Li C L, et al.Chemical short-range orders and the induced structural transition in high-entropy alloys[J]. Scripta Mater., 2018, 144: 64
[23] Zhang J, Wang Q, Wang Y M, et al.Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion resistant Cu-Ni alloys and relevant cluster model[J]. J. Mater. Res., 2010, 25: 328
[24] Wang Q, Ma Y, Jiang B B, et al.A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties[J]. Scripta Mater., 2016, 120: 85
[25] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Metall. Trans., 2005, 46: 2817
[26] Tang R Z, Tian R Z.Binary Alloy Phase Diagrams and Crystal Structure of Intermediate Phase [M]. Changsha: Central South University Press, 2009(唐仁政, 田荣璋. 二元合金相图及中间相晶体结构 [M]. 长沙: 中南大学出版社, 2009)
[27] Voorhees P W.The theory of Ostwald ripening[J]. J. Stat. Phys., 1985, 38: 231
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!