Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (7): 555-560    DOI: 10.11901/1005.3093.2017.515
ARTICLES Current Issue | Archive | Adv Search |
Synthesis and Performances of Silver Vanadate For Battery of Implantable Medical Devices
Jin ZHANG(), Ning WANG, Chong ZHAO, Jiaxing LI, Tianchi ZHANG
Xijing University, Xi'an 710123, China
Cite this article: 

Jin ZHANG, Ning WANG, Chong ZHAO, Jiaxing LI, Tianchi ZHANG. Synthesis and Performances of Silver Vanadate For Battery of Implantable Medical Devices. Chinese Journal of Materials Research, 2018, 32(7): 555-560.

Download:  HTML  PDF(6257KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

One-dimensional α-AgVO3 nanostructures were synthesized at ambient temperature via in-situ reaction process using one-dimensional K2V6O16·1.5H2O as precursor template. Then one-dimensional β-AgVO3 nanostructures were obtained through heat-treatment of the α-AgVO3 nanostructures at 300℃ for 3 h. The as-prepared α-AgVO3 and β-AgVO3 nanostructures were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS). Results of the electrochemical tests show that the β-AgVO3 nanostructures possess better rate capability and cycling performance, as well as smaller charge transfer and lithium ion transport resistance rather than that of the α-AgVO3 nanostructures.

Key words:  functional materials      silver vanadium oxides      1D nanostructure      in-situ synthesis      electrochemistry     
Received:  15 May 2017     
ZTFLH:  TB34  
Fund: Supported by Science Foundation of Xijing University (No. XJ140232)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.515     OR     https://www.cjmr.org/EN/Y2018/V32/I7/555

Fig.1  XRD patterns of K2V6O161.5H2O precursor (a), the α-AgVO3 sample (b), the β-AgVO3 sample (c)
Fig.2  FE-SEM images of K2V6O161.5H2O precursor (a), the as-prepared α-AgVO3 sample (b) and the as-prepared β-AgVO3 sample (c)
Fig.3  TEM and HRTEM images and SAED pattern ofthe as-prepared α-AgVO3 sample (a, b) andthe as-prepared β-AgVO3 sample (c, d)
Fig.4  XPS spectra of the α-AgVO3 sample (a) XPS survey spectrum of the sample, (b) XPS spectrum of the Ag 3d region, (c) XPS spectra of the V 2p regions
Fig.5  Rate capability (a), Cycling performance at 100 mAg-1 (b) and Nyquist plots after 50 cycles (c) of as-prepared one-dimensional α-AgVO3 and β-AgVO3 nanostructures electrode
[1] Skarstad P M.Battery and capacitor technology for uniform charge time in implantable cardioverter-defibrillators[J]. J. Power Sources, 2004, 136(2): 263
[2] Ramasamy R P, Fenger C, Strange T, et al.Discharge characteristics of silver vanadium oxide cathodes[J]. J. Appl. Electrochem ., 2006, 36(4): 487
[3] Takeuchi K J, Leising R A, Palazzo M J, et al. Advanced lithium batteries for implantable medical devices: mechanistic study of SVO cathode synthesis [J]. J. Power Sources, 2003, 119-121: 973
[4] Liang S Q, Zhou J, Pan A Q, et al.Facile synthesis of β-AgVO3 nanorods as cathode for primary lithium batteries[J]. Mater. Lett ., 2012, 74: 176
[5] Han C H, Pi Y Q, An Q Y, et al.Substrate-assisted self-organization of radial β-AgVO3 nanowire clusters for high rate rechargeable lithium batteries[J]. Nano Lett ., 2012, 12(9): 4668
[6] Chen Z J, Gao S K, Li R H, et al.Lithium insertion in ultra-thin nanobelts of Ag2V4O11/Ag[J]. Electrochim. Acta, 2008, 53(28): 8134
[7] Zeng H, Wang Q, Rao Y Y.Ultrafine β-AgVO3 nanoribbons derived from α-AgVO3 nanorods by water evaporation method and its application for lithium ion batteries[J]. RSC Adv ., 2015, 5(4): 3011
[8] Liang S Q, Zhou J, Pan A Q, et al.Facile synthesis of Ag/AgVO3 hybrid nanorods with enhanced electrochemical performance as cathode material for lithium batteries[J]. J. Power Sources, 2013, 228: 178
[9] Wu Y Z, Zhu P N, Zhao X, et al.Highly improved rechargeable stability for lithium/silver vanadium oxide battery induced via electrospinning technique[J]. J. Mater. Chem. A, 2013, 1(3): 852
[10] Xu J, Hu C G, Xi Y, et al.Synthesis and visible light photocatalytic activity of β-AgVO3 nanowires[J]. Solid State Sci ., 2012, 14(4): 535
[11] Kittaka S, Matsuno K, Akashi H.Crystal structure of α-AgVO3 and phase relation of AgVO3[J]. J. Solid State Chem ., 1999, 142(2): 360
[12] Yu J G, Liu W, Yu H G, et al.A one-pot approach to hierarchically nanoporous titania hollow microspheres with high photocatalytic activity[J]. Cryst. Growth Des ., 2008, 8(3): 930
[13] Kong X G, Guo Z L, Wen P H, et al.Controllable synthesis and morphology evolution from two-dimensions to one-dimension of layered K2V6O16·nH2O[J]. Cryst Eng Comm, 2015, 17(20): 3777
[14] Song J M, Lin Y Z, Yao H B, et al.Superlong β-AgVO3 Nanoribbons: High yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties[J]. ACS Nano, 2009, 3(3): 653
[15] Zhang S Y, Li W Y, Li C S, et al.Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures[J]. J. Phys. Chem. B, 2006, 110(49): 24855
[16] Bao S J, Bao Q L, Li C M, et al.Synthesis and electrical transport of novel channel-structured β-AgVO3[J]. Small, 2007, 3(7): 1174
[17] Liang S Q, Zhou J, Zhang X L, et al.Hydrothermal synthesis of Ag/β-AgVO3 nanobelts with enhanced performance as a cathode material for lithium batteries[J]. Cryst Eng Comm, 2013, 15(46): 9869
[1] Zhaohui GAO, Jianwei CHI, Maoyong TANG, Yanjun WANG, Jianping XU. Synthesis and Electrochemical Performance of Spherical Porous Vanadium Nitride[J]. 材料研究学报, 2018, 32(11): 867-873.
[2] ZHANG Yuhui YI Qingfeng**. Preparation and Electrochemical Activity of Fe/Co/N/MWCNTs Catalysts for Oxygen Reduction Reaction[J]. 材料研究学报, 2013, 27(4): 367-374.
[3] SHENG Minqi,ZHONG Qingdong, LV Chenkai, WAN Kang. Preparation of Co-Ni Alloy Coatings by Ultrasound Electrodeposition[J]. 材料研究学报, 2013, 27(3): 267-272.
[4] LI Zhenhua SHENG Minqi ZHONG Qingdong WANG Yi WU Hongyan DU Hailong. Influence of Surface Roughness of Matrix on Chromium Coatings on the Surface of H13 Steel[J]. 材料研究学报, 2010, 24(5): 455-463.
[5] GU Xunlei SHAN Yuqiao LIU Changsheng YU Xiaozhong. Research of magnetron sputtered Al–Mg alloy coatings on high-speed electro-galvanizing steel[J]. 材料研究学报, 2009, 23(5): 529-533.
[6] CUI Zhuoxing SHAO Zhongcai LIU Zhiyuan ZHAO Lixin TIAN Yanwen. Effects of additives on properties of ceramic coatings formed by micro-arc oxidation on AZ91D Mg alloy[J]. 材料研究学报, 2009, 23(2): 193-198.
[7] TANG Dewen; CHENG Xiaoling; KUANG Tongchun; WANG Chengyong. Deposit carbon coatings on high Co YG cemented carbide with combustion flame[J]. 材料研究学报, 2008, 22(6): 664-672.
[8] LEI Qingquan;ZHAO Xiaoxu;FAN Yong;ZHANG Weiguo(Dept. Electrical Materials Engineering; Harbin University of Science and Technology;Harbin 150040). ELECTRICAL AND MAGNETIC PROPERTIES OF NEW POLYACENE QUINONE RADICAL POLYMERS[J]. 材料研究学报, 1998, 12(6): 659-662.
[9] QIAN Guodong;WANG Minquan (Dept. of Materials Science Engineering; Zhejiang University; Hangzhou 210027)LU Shaozhe;HUANG Shihua (Lab. of Excited State Processes; The Chinese Academy of Sciences; Changchun 130021). IN-SITU SYNTHESIS,FLUORESCENCE PROPERTIES AND THERMAL STABILITY OF (Eu~(3+), Tb~(3+)) -1,10-PHENANTHROLINE COMPLEXES IN SILICA GEL GLASSES[J]. 材料研究学报, 1998, 12(4): 352-356.
[10] ZENG Chaoliu Zhang Jianqing Wu Weitao (Institute of Corrosion and Protection of Metals;Corrosion Science Lab;Chinese Academy of Sciences)Li Dong (Institute of Metals Research;Chinese Academy of Sciences). HOT CORROSION OF Ti_3Al INTERMETALLIC COMPOUND[J]. 材料研究学报, 1993, 7(5): 376-379.
[11] ZHANG Yunshan;LIU Ruixia(Northeast Institute of Technology). PROPERTIES OF THE OXYGEN EVOLUTION ELECTRODE DSA OF THE TYPE Ti-MnO_x[J]. 材料研究学报, 1992, 6(1): 47-51.
[12] XU Mao(Institute of Chemistry;Academia Sinica). LIQUID CRYSTALLINE POLYMER MATERIALS[J]. 材料研究学报, 1990, 4(2): 143-149.
No Suggested Reading articles found!