Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (7): 547-554    DOI: 10.11901/1005.3093.2017.658
ARTICLES Current Issue | Archive | Adv Search |
Dynamic Rheological Characterization of PLA/PBS Blends Compatibilized by Epoxy Furan Resin
Dayong ZHU1,2, Ting GU1,2, Jie YU2, Shengjun LU1,2()
1 College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2 National Engineering Technology Research Center for Compounding and Modification of Polymeric Materials, Guiyang 550014, China
Cite this article: 

Dayong ZHU, Ting GU, Jie YU, Shengjun LU. Dynamic Rheological Characterization of PLA/PBS Blends Compatibilized by Epoxy Furan Resin. Chinese Journal of Materials Research, 2018, 32(7): 547-554.

Download:  HTML  PDF(2824KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Poly(lactic acid)/epoxy furan resin/poly (butylene succinate) (PLA/FER/PBS) blends with different epoxy furan resin (FER) content were prepared by melt blending, while the effect of FER content on the dynamic rheological behavior and compatibility of the PLA/PBS blends was investigated by means of rotary rheometer, scanning electron microscopy (SEM) and universal testing machine. Results show that when the strain (γ) is less than 10%, the dynamic modulus does not change with the change of γ and the blends show linear viscoelastic behavior; when γ is more than 10%, the dynamic modulus decrease obviously, showing the "Payne" effect; FER can improve the processing properties of PLA/PBS blends;PLA/PBS blends have two different relaxation processes, the relevant curves have two distinct half arc, PLA and PBS phase morphology changed with the addition of FER; the time- and temperature-superposition-curves show that for PLA/PBS blends with FER content of 0.3 phr, of which, the Han-curves and vGP-curves of the blends present good overlap, implying the compatibility between PLA and PBS is good; the interface adhesion between PLA and PBS is the best, and the PLA and PBS has the most ideal interfacial compatibility; the tensile strength and impact strength of the blends reached the maximum value of 56.9 MPa and 4.33 kJ/m2, which is 11.2% and 37% higher than that of the simple PLA/PBS blends, respectively.

Key words:  organic polymer materials      poly(lactic acid)      compatibility      rheological behavior      epoxy furan resin     
Received:  07 November 2017     
ZTFLH:  TQ320  
Fund: Supported by National Natural Science Foundation of China (No. 51563002), Guizhou Province "Hundred Level" Innovative Talents Project, Guizhou Science Cooperation Platform Talent (No. [2016]5653)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.658     OR     https://www.cjmr.org/EN/Y2018/V32/I7/547

Fig.1  FT-IR spectrum of FER (peak at 1589.52 cm-1 and 1509.54 cm-1 are ascribed to the absorption of furan nucleus group, and that at 903.26 cm-1 belongs to the absorption of epoxy group)
Fig.2  FER and PLA/PBS reaction equations
Sample PLA/phr PBS/phr FER/phr
FER-0 80 20 0
FER-0.1 80 20 0.1
FER-0.2 80 20 0.2
FER-0.3 80 20 0.3
FER-0.4 80 20 0.4
FER-0.5 80 20 0.5
Table 1  PLA/FER/PBS blend of the different FER
Fig.3  Oscillation strain versus modulus curves for PLA/PBS and PLA /FER /PBS blends (a) storage modulus and (b) loss modulus
Fig.4  Complex viscosity versus frequency curves of PLA/FER/PBS blends with different mass fractions of FER
Fig.5  Storage modulus (a) and loss modulus (b) vs frequency curves of PLA/FER/PBS blends with different mass fractions of FER
Slope value G' ω2 G'' ω
KF0 1.621 0.880
KF1 1.460 0.842
KF2 1.607 0.876
KF3 1.721 0.931
KF4 0.778 0.812
KF5 0.779 0.821
Table 2  PLA/FER/PBS blend of the different FER in low frequency area slope value
Fig.6  Cole-Cole curves of PLA/FER/PBS blends with different mass fractions of FER
Fig.7  Han curves of PLA /FER /PBS blends at different temperatures (a) 0.1 phr of FER, (b) 0.2 phr of FER, (c) 0.3 phr of FER, (d) 0.4 phr of FER, (e) 0.5 phr of FER
Fig.8  vGP curves of PLA/FER/PBS blends at different temperatures (a) 0.1 phr of FER, (b) 0.2 phr of FER, (c) 0.3 phr of FER, (d) 0.4 phr of FER, (e) 0.5 phr of FER
Fig.9  SEM micrographs of brittle fracture surfaces of samples with different amounts of furan epoxy resin (a) 0 phr of FER addition, (b) 0.1 phr of FER addition, (c) 0.2 phr of FER addition, (d) 0.3 phr of FER addition, (e) 0.4 phr of FER addition, (f) 0.5 phr of FER addition
Fig.10  Mechanical properties of PLA/FER/PBS blends with different mass fractions of FER
[1] Lv S S, Cao J, Tan H Y, et al.Effects of wood flour contents on performance of wood flour-starch/poly (lactic acid) composites[J]. Acta Mater. Compos. Sin ., 2015, 32: 347(吕闪闪, 曹军, 谭海彦等. 木粉含量对木粉-淀粉/聚乳酸复合材料性能的影响[J]. 复合材料学报, 2015, 32: 347)
[2] Wu D F, Zhang Y S, Zhang M, et al.Phase behavior and its viscoelastic response of polylactide/poly(ε-caprolactone) blend[J]. Eur. Polym. J ., 2008, 44: 2171
[3] Li Y L, Chen F S, Liu K L, et al.New research progress of biodegradable materials[J]. Plast. Sci. Technol ., 2012, 40(11): 70(李彦磊, 陈复生, 刘昆仑等. 可生物降解材料研究新进展[J]. 塑料科技, 2012, 40(11): 70)
[4] Lan X R, Liu X T, Hua S, et al.Effect of poly (acrylic acid) on the rheological and thermal properties of poly (lactic acid)[J]. Acta Polym. Sin ., 2013, (7): 922(兰小蓉, 刘小亭, 华笋等. PAA对PLA流变性能和热性能的影响[J]. 高分子学报, 2013, (7): 922)
[5] Sun J H, Feng X, Li P, et al.Preparation and characteration of PLA/starch blends compatibilized by furan epoxy resin[J]. Acta Polym. Sin ., 2016, (7): 946(孙晋皓, 冯欣, 李鹏等. 环氧呋喃树脂反应性增容改性聚乳酸/淀粉复合材料的研究[J]. 高分子学报, 2016, (7): 946)
[6] Deng Y L, Yang B, Miao J B, et al.Research progress in the toughening modification of polylactic acid[J]. Chem. Ind. Eng. Prog ., 2015, 34: 3975(邓艳丽, 杨斌, 苗继斌等. 聚乳酸增韧研究进展[J]. 化工进展, 2015, 34: 3975)
[7] Correa J P, Bacigalupe A, Maggi J, et al.Biodegradable PLA/PBAT/clay nanocomposites: Morphological, rheological and thermomechanical behavior[J]. J. Renew. Mater ., 2016, 4: 258
[8] Carrasco F, Pagès P, Gámez-Pérez J, et al.Kinetics of the thermal decomposition of processed poly(lactic acid)[J]. Polym. Degrad. Stabil ., 2010, 95: 2508
[9] Gui Z Y, Lu C, Cheng S J.Comparison of the effects of commercial nucleation agents on the crystallization and melting behaviour of polylactide[J]. Polym. Test ., 2013, 32: 15
[10] Bhatia A, Gupta R K, Bhattacharya S N, et al.An investigation of melt rheology and thermal stability of poly(lactic acid)/ poly(butylene succinate) nanocomposites[J]. J. Appl. Polym. Sci ., 2009, 114: 2837
[11] Shibata M, Inoue Y, Miyoshi M.Mechanical properties, morphology, and crystallization behavior of blends of poly (l-lactide) with poly (butylene succinate-co-l-lactate) and poly (butylene succinate)[J]. Polymer, 2006, 47: 3557
[12] Lu J J, Bai H Y, Wang W, et al.Dynamic rheology studies on the miscibility of PVDF/PTW blends[J]. Acta Polym. Sin ., 2016, (3): 315(陆佳俊, 白绘宇, 王玮等. 动态流变学对PVDF/PTW共混物流体相容性研究[J]. 高分子学报, 2016, (3): 315)
[13] Zheng Q, Zuo M.Investigation of structure and properties for polymer systems based on dynamic rheological approaches[J]. Chinese J. Polym. Sci ., 2005, 23: 341
[14] Xu L Q, Zhao Y Q, Chen R Y, et al.Ethylene methyl acrylate copolymer toughened poly(lactic acid) blends: phase morphologies, mechanical and rheological properties[J]. Int. Polym. Proc ., 2016, 31: 301
[15] Yu X, Li J J, Wang Y W.Investigation of melt rheological properties of PET and PLA blends[J]. Mater. Rev ., 2012, 26(22): 59(于翔, 李静静, 王延伟. 聚乳酸/聚酯共混体系熔体流变性能研究[J]. 材料导报, 2012, 26(22): 59)
[16] Liu F, Zhong Y, Jiang C Y, et al.Studies on the viscoelasticity of poly (trimethylene terephthalate)/poly(ethylene-octene)/organomontmorillonite nanocomposites[J]. Polym. Compos ., 2012, 33: 999
[17] Utracki L A, Kamal M R.The rheology of polymer alloys and blends [A]. Polymer Blends Handbook[M]. Dordrecht: Springer, 2003: 449
[18] Xu L Q, Huang H X.Relaxation behavior of poly(lactic acid)/poly(butylene succinate) blend and a new method for calculating its interfacial tension[J]. J. Appl. Polym. Sci ., 2012, 125(Suppl.2): E272
[19] Meng B, Deng J J, Liu Q, et al.Transparent and ductile poly (lactic acid) / poly (butyl acrylate) (PBA) blends: Structure and properties[J]. Eur. Polym. J ., 2012, 48: 127
[1] YE Jiaofeng, WANG Fei, ZUO Yang, ZHANG Junxiang, LUO Xiaoxiao, FENG Libang. Epoxy Resin-modified Thermo-reversible Polyurethane with High Strength, Toughness, and Self-healing Performance[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] LI Hanlou, JIAO Xiaoguang, ZHU Huanhuan, ZHAO Xiaohuan, JIAO Qingze, FENG Caihong, ZHAO Yun. Synthesis of Branched Fluorine-containing Polyesters and their Properties[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] MA Yizhou, ZHAO Qiuying, YANG Lu, QIU Jinhao. Preparation and Dielectric Energy Storage Properties of Thermoplastic Polyimide/Polyvinylidene Fluoride Composite Film[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[5] LONG Qing, WANG Chuanyang. Thermal Degradation Behavior and Kinetics Analysis of PMMA with Different Carbon Black Contents[J]. 材料研究学报, 2022, 36(11): 837-844.
[6] LI Jianzhong, ZHU Boxuan, WANG Zhenyu, ZHAO Jing, FAN Lianhui, YANG Ke. Preparation and Properties of Copper-carrying Polydopamine Coating on Ureteral Stent[J]. 材料研究学报, 2022, 36(10): 721-729.
[7] JIANG Ping, WU Lihua, LV Taiyong, Pérez-Rigueiro José, WANG Anping. Repetitive Stretching Tensile Behavior and Properties of Spider Major Ampullate Gland Silk[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] YAN Jun, YANG Jin, WANG Tao, XU Guilong, LI Zhaohui. Preparation and Properties of Aqueous Phenolic Resin Modified by Organosilicone Oil[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] SUN Liying, QIAN Jianhua, ZHAO Yongfang. Preparation and Performance of AgNWs -TPU/PVDF Flexible Film Capacitance Sensors[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] TANG Kaiyuan, HUANG Yang, HUANG Xiangzhou, GE Ying, LI Pinting, YUAN Fanshu, ZHANG Weiwei, SUN Dongping. Physicochemical Properties of Carbonized Bacterial Cellulose and Its Application in Methanol Electrocatalysis[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] SU Chenwen, ZHANG Tingyue, GUO Liwei, LI Le, YANG Ping, LIU Yanqiu. Preparation of Thiol-ene Hydrogels for Extracellular Matrix Simulation[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] YU Jiaying, YANG Xixiang, ZHAN Desong, YANG Ke, REN Ling, WANG Jingren, XU Jiawei. Antibacterial Property and in vitro Biocompatibility of a Ti-Zr-Cu Alloy[J]. 材料研究学报, 2021, 35(11): 873-880.
[15] WAN Liying, XIAO Yang, ZHANG Lunliang. Preparation and Properties of PU-DA System Based on Thermoreversible Diels-Alder Dynamic Covalent Bond[J]. 材料研究学报, 2021, 35(10): 752-760.
No Suggested Reading articles found!