Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (7): 513-517    DOI: 10.11901/1005.3093.2017.197
ARTICLES Current Issue | Archive | Adv Search |
Microstructure of Hydrothermally Synthesized Fly Ash-based Tobermorite Doped with Aluminum
Xiaolu GUO1,2(), Fanjie MENG2
1 Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Cite this article: 

Xiaolu GUO, Fanjie MENG. Microstructure of Hydrothermally Synthesized Fly Ash-based Tobermorite Doped with Aluminum. Chinese Journal of Materials Research, 2018, 32(7): 513-517.

Download:  HTML  PDF(2045KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure and characterization of hydrothermally synthesized fly ash-based tobermorite doped with Al (FA-T) was investigated in comparison with the counterpart of hydrothermal product (T-A) synthesized from pure reagents. The results show that the interplanar spacing of (002) plane of FA-T was larger than that of T-A, correspondingly the ratio of Ca/(Si+Al) increased and the Si-content reduced. Because certain part of the doped Al was involved in the reconstruction of tobermorite structure and the rest part of Al existed in interlamellar spaces of the tobermorite structure . The wave-numbers of two absorption peaks, which belong to the bending vibration of Si-O (Q1) and Si-O-Si for FA-T, were larger than those for T-A. These mean that the chains of [SiO4]4- for FA-T were shorter than those for T-A, and the degree of polymerization of FA-T was poor. The SEM results reveal that the T-A presents as thin foils, whilst the FA-T as spherical particles wound with fibrous and lamellar tobermorite.

Key words:  inorganic non-metallic materials      fly ash      reagents      hydrothermal synthesis      tobermorite      Al-doping      microstructure     
Received:  15 August 2017     
ZTFLH:  X773  
Fund: Supported by Key Special Project in National Key Research and Development Program of China during the Thirteenth Five-year Plan Period (No. 2016YFC0700802), National Natural Science Foundation of China (No. 51478328), Natural Science Foundation of Shanghai (No. 17ZR1442000) and Fundamental Research Funds for the Central Universities (No. 22120180087)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.197     OR     https://www.cjmr.org/EN/Y2018/V32/I7/513

Chemical compositions SiO2 Al2O3 Fe2O3 CaO Na2O MgO P2O5 SO3 TiO2
Fly ash 40.7 22.4 5.34 9.46 0.45 0.83 0.71 2.17 1.16
Table 1  Chemical compositions (/%) of the fly ash
Samples SiO2 CaO Al(NO3)39H2O H2O
T-A 8.25 9.30 3.75 212.96
Table 2  Mix ratios (/g) of the synthesized tobermorite with aluminum doped
Samples FA Ca(OH)2 H2O NaOH
FA-T 1.96 0.84 70 0.56
Table 3  Mix ratios of the synthesized fly ash-based tobermorite with aluminum doped
Fig.1  XRD patterns of tobermorite with aluminum doped
Chemical compositions CaO SiO2 Al2O3 Fomula using molar ratio
CamSinAln'
Mass fraction/% Molar
ratio
/m
Mass fraction/% Molar
ratio
/n
Mass fraction/% Molar
ratio
/n'
T-A 43.30 0.773 44.70 0.745 2.64 0.026 Ca5Si4.82Al0.34
FA-T 31.1 0.555 37.1 0.618 15.3 0.3 Ca5Si5.57Al2.70
Ideal tobermorite
(Ca5Si6O16(OH)4H2O)
38.36 0.685 49.32 0.822 - - Ca5Si6
Table 4  Chemical compositions of tobermorite with aluminum doped
Fig.2  TG/DSC curves of tobermorite with aluminum doped
Fig.3  IR curves of tobermorite with aluminum doped
Fig.4  Scanning electron microscope of tobermorite with aluminum doped
[1] Xu Y, Yuan D F, Dong W W.On comprehensive utilization of fly ash[J]. Chin. Well Rock Salt, 2010, 41(1): 29(徐夷, 袁端锋, 董文武. 粉煤灰综合利用浅谈[J]. 中国井矿盐, 2010, 41(1): 29)
[2] Yang L X, Shi Z Y.“Eleventh five” fly ash comprehensive utilization achievements, future technology orientation and development tendency in our country[J]. Coal ash, 2012, (4): 4(杨利香, 施钟毅. “十一五”我国粉煤灰综合利用成效及其未来技术方向和发展趋势[J]. 粉煤灰, 2012, (4): 4)
[3] Bian B X, Xie Q, Zhao Y C.Technology of Reusing Solid Saste of Coal [M]. Beijing: Chemistry Industry press, 2005(边炳鑫, 解强, 赵由才. 煤系固体废弃物资源化技术 [M]. 北京: 化学工业出版社, 2005)
[4] Mao S D, Li Z, Fang Y.Current status of research on the utilization of fly ash[J]. Concrete, 2011, (7): 82(茅沈栋, 李镇, 方莹. 粉煤灰资源化利用的研究现状[J]. 混凝土, 2011, (7): 82)
[5] Han H Q, Jiang T D.Technology of Comprehensive Utilization of Fly Ash [M]. Beijing: Chemistry Industry press, 2001(韩怀强, 蒋挺大. 粉煤灰利用技术 [M]. 北京: 化学工业出版社, 2001)
[6] Nie Y M, Liu S X, Niu F S, et al.Research progress and developing prospect of fly ash[J]. Concrete, 2010, (4): 62(聂轶苗, 刘淑贤, 牛福生等. 粉煤灰研究进展及展望[J]. 混凝土, 2010, (4): 62)
[7] Wang Z F, Feng Y J, Zhang L N.Advances in studies in effects of fine coal ash on agricultural crops[J]. J. Shandong Agric. Univ ., 2003, 34(1): 152(王兆锋, 冯永军, 张蕾娜. 粉煤灰农业利用对作物影响的研究进展[J].山东农业大学学报, 2003, 34(1): 152)
[8] Somiya S.Historical developments of hydrothermal works in Japan, especially in ceramic science[J]. J. Mater. Sci ., 2006, 41(5): 1307
[9] Ferreira C, Ribeiro A, Ottosen L.Possible applications for municipal solid waste fly ash[J]. J. Hazard. Mater ., 2003, 96(2-3): 201
[10] Ma W P, Brown P W.Hydrothermal synthesis of tobermorite from fly ashes[J]. Adv. Cem. Res ., 1997, 9(33): 9
[11] Lv S Q, Ma S H, Guo X Y, et al.Preparation of nanocomposite tobermorite whiskers with fly ash by dynamic hydrothermal method and their characterization[J]. Chin. J. Process Eng ., 2014, 14(3): 487(吕松青, 马淑花, 郭曦尧等. 粉煤灰动态水热合成纳米复合托贝莫来石晶须及其表征[J]. 过程工程学报, 2014, 14(3): 487)
[12] Shan C C, Jing Z Z, Pan L L, et al.Hydrothermal solidification of municipal solid waste incineration fly ash[J]. Res. Chem. Intermed, 2011, 37(2-5): 551
[13] Fan Y, Zhang F S, Zhu J X, et al.Effective utilization of waste ash from MSW and coal co-combustion power plant-zeolite synthesis[J]. J. Hazard. Mater ., 2008, 153(1-2): 382
[14] Li G H, Zhang J Q, Luo J, et al.Preparation of tobermorite whisker from sodium silicate solution[J]. J. Chin. Ceram. Soc ., 2012, 40(12): 1721(李光辉, 张吉清, 罗骏等. 硅酸钠溶液合成托贝莫来石晶须[J]. 硅酸盐学报, 2012, 40(12): 1721)
[15] Jing Z, Jin F, Hashida T, et al.Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag[J]. J. Mater. Sci ., 2008, 43(7): 2356
[16] Zhang J Q.Study on the synthesis of calcium silicate-based mineral materials from alkaline sodium silicate solution [D]. Changsha: Central South University, 2012(张吉清. 含硅酸钠溶液合成硅酸钙基矿物材料的研究 [D]. 长沙:中南大学, 2012)
[17] Yang N R, Yue W H.The Handbook of Inorganic Matalloid Materials Atlas [M]. Wuhan: Wuhan University of Technology press, 2000(杨南如, 岳文海. 无机非金属材料图谱手册 [M]. 武汉: 武汉工业大学出版社, 2000)
[18] Lodeiro I G, Macphee D E, Palomo A, et al.Effect of alkalis on fresh C-S-H gels: FTIR analysis[J]. Cem. Concr. Res ., 2009, 39(3): 147
[19] Lodeiro I G, Jimenez A F, Blanco M T, et al.FTIR study of the sol-gel synthesis of cementitious gels C-S-H and N-A-S-H[J]. J. Sol-Gel Sci. Technol ., 2008, 45(1): 63
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[10] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[11] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[14] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
[15] ZHANG Shuaijie, WU Qian, CHEN Zhitang, ZHENG Binsong, ZHANG Lei, XU Pian. Effect of Mn on Microstructure and Properties of Mg-Y-Cu Alloy[J]. 材料研究学报, 2023, 37(5): 362-370.
No Suggested Reading articles found!