Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (7): 502-512    DOI: 10.11901/1005.3093.2017.391
ARTICLES Current Issue | Archive | Adv Search |
Fabrication and Properties of Super-hydrophobic Composite Coatings
Shuohong GAO1,2, Min LIU2(), Xiaojun PANG2, Xiaofeng ZHANG2, Changguang DENG2, Xinghua LIANG2, Chunming DENG2
1 School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
2 Guangdong Institute of New Materials, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Key Lab of Gunagdong for Modern Surface Engineering Technology, Guangzhou 510651, China
Cite this article: 

Shuohong GAO, Min LIU, Xiaojun PANG, Xiaofeng ZHANG, Changguang DENG, Xinghua LIANG, Chunming DENG. Fabrication and Properties of Super-hydrophobic Composite Coatings. Chinese Journal of Materials Research, 2018, 32(7): 502-512.

Download:  HTML  PDF(8878KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite coatings of double-layered Al2O3/PTFE and single-layered Al2O3-PTFE were prepared via atmospheric plasma spraying (APS) process. The morphology, phase composition, roughness, hardness, hydrophobic property and wear resistance of the composite coatings were characterized by scanning electron microscope (SEM), 3D topography tester, micro-hardness tester, contact angle tester and friction and wear tester respectively. The influence of Al2O3 bond coat, Al2O3 hard particle filling and different process parameters on the hydrophobic property and wear resistance of the composite coatings were assessed. Results show that the wear resistance of the single PTFE coating were improved significantly by inducing Al2O3 ceramic as a bond coat or as hard particle filling phase into the composite coatings; The wear resistance property of Al2O3-PTFE composite coatings was superior to that of the Al2O3/PTFE composite coatings, correspondingly the wear rate of which was 2.84×10-5 mm3/N·m and 9.97×10-5 mm3/N·m respectively, the friction coefficient is 0.51 and 0.38 respectively; While the surface of the two composite coatings showed good hydrophobic properties with static contact angle of 155.4° and 148.9° respectively, which may be attributed to the compacted micro-nano convex structure on the rough surface and the synergistic effect of fluoride with low surface energy distributed on the composite coating surface. After the friction and wear test, the surface structure of the two composite coatings was damaged, hence the hydrophobicity of the coatings degraded, even so, the Al2O3/PTFE composite coating still exhibits super-hydrophobicity.

Key words:  composites      superhydrophobic composite coatings      atmospheric plasma spraying      hydrophobic property      wear-resistance     
Received:  03 July 2017     
ZTFLH:  TG147  
Fund: Supported by National Key R & D Plan (No. 2017YFB0306100), Guangdong Academy of Sciences (No. 2017GDASCX-0202);Guangdong Technical Research Program (Nos. 201313050800031, 201413050502008, 2014B070706026 & 2013B061800053);Guangdong Natural Science Foundation (No. 2016A030312015)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.391     OR     https://www.cjmr.org/EN/Y2018/V32/I7/502

Coating Current
/A
Spray distance
/mm
Carrier gas flow /(L·min-1) Feed rate
/(g·min-1)
Al2O3 PTFE Al2O3 PTFE H2 Ar Al2O3 PTFE
Al2O3/PTFE 630 450 120 60 10 40 30 15
Table 1  Spraying process parameters of Al2O3/PTFE coatings
Fig.1  Schematic diagram of plasma spraying
Coating Current
/A
Spray distance
/mm
Carrier gas flow /(L·min-1) Feed rate
/(g·min-1)
Al2O3-PTFE Al2O3-PTFE H2 Ar Al2O3-PTFE
Al2O3-PTFE 600 110 12 40 20
Table 2  Spraying process parameters of Al2O3-PTFE coatings
Fig.2  Schematic diagram of pin-on-disk wear test apprature
Fig.3  Surface morphology of the Al2O3/PTFE and Al2O3-PTFE composition coatings
Fig.4  Surface morphology of coated particles (a) Al2O3/PTFE composite coatings; (b) Al2O3-PTFE composite coatings
Fig.5  Cross section morphology of the Al2O3/PTFE and Al2O3-PTFE composition coatings (a) (b) Al2O3/PTFE composite coatings; (c) (d) Al2O3-PTFE composite coatings
Properties
Samples Hardness/HV0.3 Bonding strength/MPa
Coatings Al2O3/PTFE Al2O3-PTFE Al2O3/PTFE Al2O3-PTFE
1 726.94 589.54 21.8 23.9
2 809.23 669.71 24.6 19.6
3 712.78 610.35 29.7 21.5
Average 761.65 623.20 25.4 21.7
Table 3  Mechanical properties of coatings
Fig.6  3D surface images of the Al2O3/PTFE and Al2O3-PTFE composite coatings (a) Al2O3/PTFE composite coatings; (b) Al2O3-PTFE composite coatings
Fig.7  The surface elemental maps of the Al2O3/PTFE composite coatings
Fig.8  The surface elemental maps of the Al2O3/PTFE composite coatings
Fig.9  Element analysis of Spot 1 in Al2O3-PTFE composite coatings surface
Fig.10  Schematic of super-hydrophobic surface formed from micro-nano structures
Fig.11  Contact angle of the Al2O3/PTFE and Al2O3-PTFE composite coatings (a) (b) Al2O3/PTFE composite coatings; (c) (d) Al2O3-PTFE composite coatings
Fig.12  Friction curves of the Al2O3/PTFE and Al2O3-PTFE composite coatings (a) Al2O3/PTFE composite coatings; (b) Al2O3-PTFE composite coatings
Fig.13  Morphologies of wear tracks on Al2O3/PTFE and Al2O3-PTFE composite coatings surface (a) Al2O3/PTFE composite coatings; (b) Al2O3-PTFE composite coatings
Coatings Friction coefficient Wear track width /mm Wear rate /mm3 /N·m
PTFE 0.15 6.62 45.77×10-5
Al2O3/PTFE 0.38 1.73 9.97×10-5
Al2O3-PTFE 0.51 1.14 2.84×10-5
Table 4  Friction and wear results of the composite coatings
Fig.14  Contact angle of the Al2O3/PTFE and Al2O3-PTFE composite coatings after frictional wear (a) (b) Al2O3/PTFE composite coatings; (c) (d) Al2O3-PTFE composite coatings
[1] Guo Y W.Study on Self-cleaning Function of Bionic Non-adhesive Cooker's Shape and Material [D]. Changchun: Jilin university, 2007(郭蕴纹. 不粘锅形态—材料自洁耦合仿生研究 [D]. 长春:吉林大学, 2007)
[2] Yebra D M, Kiil S, Dam-Johansen K.Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings, 2004, 50(2): 75
[3] Zhang L C.Introduction to Polymer Material [M]. Beijing:Chemistry Industry Press, 1998(张留成. 高分子材料导论 [M]. 北京:化学工业出版社, 1998)
[4] Xie S J.Modifying of poly (tetrafluoroethylene) and its application[J]. New Chemical Materials, 2002, 30(11): 26(谢苏江. 聚四氟乙烯的改性及应用[J]. 化工新型材料, 2002, 30(11): 26)
[5] Kalacska G, Peteghem A V, Parys F V.The tribological behaviour of engineering plastics during sliding friction investigated with small-scale specimens[J]. Wear, 2002, 253(05): 673
[6] Zhai L, Fevzi C, Rubner M F, et al.Nanoporosity-driven superhydrophilicity: A means to create multifunctional antifogging coatings[J]. Langmuir, 2006, 22(6): 2856
[7] Cortese B, Cingolani R, Manca M, et al.Superhydrophobicity due to the hierarchical scale roughness of PDMS surface[J]. Langmuir, 2008, 4(6): 2712
[8] Takahara A, Tanaka K, NakamuEa T, et al. Super-Liquid-Repellent surfaces prepared bycolloidal silica Nano-particles covered with fluoroalkyl groups[J]. Langmuir, 2005, 21(16): 7299
[9] Akram Raza M, Poelsema B, van Silfhout A, et al. Superhydrophobic surfaces by anomalous fluroalkylsilane self-assembly on silica nanosphere arrays[J]. Langmuir, 2010, 26(15): 12962
[10] Veeramasuneni S, Drelich J, Miller J D, et al.Hydrophobicity of ion-plated PTFE coatings[J]. Progress in Organic Coatings, 1997, 31(3): 265
[11] Jeffrey P Y, Thomas J M.Ultrahydrophobic polymer surfaces prepared by simultaneous ablation of polypropylene and suttering of polyte (trafluoroethylene) using radio frequency plasma[J]. Macromolecules, 1999, 32(20): 6800
[12] Yamauchi G, Miller J D, Saito H, et al.Wetting characteristics of newly developed water-repellent material[J]. Colloids & Surfaces A Physicochemical & Engineering Aspects, 1996, 116(1-2): 125
[13] Di Z Y, He J P, Zhou J H, et al.Fabrication and anticorrosion property of superhydrophobic surfaces with hierarchical structure through an organic-inorganic self-assemble process[J]. Journal of Inorganic Materials, 2010, 25(7): 765(狄志勇, 何建平, 周建华等. 有机-无机自组装制备类荷叶结构超疏水涂层及其性能研究[J]. 无机材料学报, 2010, 25(7): 765)
[14] Gao X F, Jiang L.Biophysics:water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36
[15] Yang K, Fukumoto M, Yassui T, et al.Role of substrate temperature on microstructure formation in plasma-sprayed splats[J]. Surface and Coatings Technology, 2013, 214(214): 138
[16] Zhang J X, He J N, Dong Y C, et al.Microstructure characteristics of Al2O3-13wt%TiO2 coating plasma spray deposited with nanocrystalline powders[J]. Journal of Materials Processing Technology, 2008, 197(1-3): 31
[17] Lima R S, Kucuk A, Berndt C C.Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized zirconia[J]. Materials Science and Engineering A, 2002, 327(2): 224
[18] Baxter S.Large contact angles of plant and animal surfaces[J]. Nature, 1945, 155(3923): 21
[19] Li K Q.Fabrication and properties of superhydrophobic surface and organic/inorganic hybrid superhydrophobic coating[D]. Guangzhou:South China University of Technology, 2005(李坤泉. 超疏水表面的构造和有机/无机杂化超疏水涂层的制备与性能研究[D]. 广州: 华南理工大学, 2015)
[20] Zhu D Y, Qiao W, Wang L D.Hydrophobic mechanism and criterion of lotus-leaf-like micro-convex-concave surface[J]. Chinese Sci Bull, 2010, (16): 1595(朱定一, 乔卫, 王连登. 仿荷叶微凹凸表面的疏水机理与判据[J]. 科学通报, 2010, (16): 1595)
[1] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[2] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[3] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[4] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[5] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[6] XIE Donghang, PAN Ran, ZHU Shize, WANG Dong, LIU Zhenyu, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Reinforced Particle Size on the Microstructure and Tensile Properties of B4C/Al-Zn-Mg-Cu Composites[J]. 材料研究学报, 2023, 37(10): 731-738.
[7] WANG Yankun, WANG Yu, JI Wei, WANG Zhihui, PENG Xiangfei, HU Yuxiong, LIU Bin, XU Hong, BAI Peikang. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. 材料研究学报, 2022, 36(7): 536-544.
[8] ZONG Ping, LI Shiwei, CHEN Hong, MIAO Sainan, ZHANG Hui, LI Chao. In-situ Thermolysis Preparation of Carbon Capsulated Nano-copper and Its Stability[J]. 材料研究学报, 2022, 36(11): 829-836.
[9] ZONG Yixun, LI Shufeng, LIU Lei, ZHANG Xin, PAN Deng, WU Daihuiyu. Interface Regulation and Strengthening Mechanism of GNP-Ni/Cu Composites[J]. 材料研究学报, 2022, 36(10): 777-785.
[10] HOU Jing, YANG Peizhi, ZHENG Qinhong, YANG Wen, ZHOU Qihang, LI Xueming. Preparation and Performance of Graphite/TiO2 Composite Photocatalyst[J]. 材料研究学报, 2021, 35(9): 703-711.
[11] YANG Yana, CHEN Wenge, XUE Yuanlin. Interficial Bonding within Cu-based Composites Reinforced with TiC- or Ni-coated Carbon Fiber[J]. 材料研究学报, 2021, 35(6): 467-473.
[12] LI Wanxi, DU Yi'en, GUO Fang, CHEN Yongqiang. Preparation and Electromagnetic Properties of CoFe2O4-Co3Fe7 Nanoparticles and CoFe2O4/Porous Carbon[J]. 材料研究学报, 2021, 35(4): 302-312.
[13] HU Manying, OUYANG Delai, CUI Xia, DU Haiming, XU Yong. Properties of TiC Reinforced Ti-Composites Synthesized in Situ by Microwave Sintering[J]. 材料研究学报, 2021, 35(4): 277-283.
[14] SONG Yuehong, DAI Weili, XU Hui, ZHAO Jingzhe. Preparation and Photocatalytic Properties of g-C3N4/Bi12O17Cl2 Composites[J]. 材料研究学报, 2021, 35(12): 911-917.
[15] TAN Xi, SONG Yuzhe, SHI Xin, QIANG Jin, WEI Tingxuan, LU Qihai. Magnetization Reversal Field and Magneto-Resistor of Spin Valve[J]. 材料研究学报, 2020, 34(4): 272-276.
No Suggested Reading articles found!