Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (3): 184-190    DOI: 10.11901/1005.3093.2018.124
ARTICLES Current Issue | Archive | Adv Search |
Analysis of Creep Performance of Micro Solder Joints under Different Loading Mode
Xiangxia KONG, Fenglian SUN(), Miaosen YANG
School of Material Science and Engineering, Harbin University of Science and Technology,Harbin 150040, China;
Cite this article: 

Xiangxia KONG, Fenglian SUN, Miaosen YANG. Analysis of Creep Performance of Micro Solder Joints under Different Loading Mode. Chinese Journal of Materials Research, 2018, 32(3): 184-190.

Download:  HTML  PDF(954KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Creep behavior of the ball grid array (BGA) of lead-free solder joints of Sn-0.7Ag-0.5Cu-3.5Bi-0.05Ni (SACBN) was investigated via nanoindentation by step loading-unloading and single loading-unloading respectively. The results show that: for the two different test modes with the same load 60 mN and holding time 300 s, the creep displacement of solder joints by step loading-unloading is significantly less than that by single loading-unloading. However, the creep hardness for the former case is 1.87 times of that of the later one. The indentation creep decreased at three stages for the case of step loading-unloading, however the creep hardness increased. The creep exponent n was obtained by fitting calculation and found that the n value for the step loading-unloading is 1.31 times of that for single loading-unloading. The creep resistance performance of micro solder joints was improved by strain hardening during the process of step loading-unloading.

Key words:  metallic materials      nanoindentation      micro solder joints      creep resistance      step loading-unloading      stress index     
Received:  07 September 2017     
ZTFLH:  TG425  
Fund: Supported by National Natural Science Foundation of China (No. 51174069)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.124     OR     https://www.cjmr.org/EN/Y2018/V32/I3/184

Fig.1  Loading pattern for load - unload test mode
Fig.2  Loading pattern for step load- unload test mode
Fig.3  Overall microstructure of BGA solder joints after nanoindentation test
Fig.4  Typical indentation load-depth curve for solder alloy
Fig.5  Relation of creep deformation versus dwell time
Fig.6  Force-displacement curve of SACBN BGA solder joint under different load-unload method (a) Force-displacement curve of micro solder joint under step load-unloading test mode (b) Force-displacement curve of micro solder joint under single load-unloading test mode
Fig.7  Creep depth-time curve of SACBN BGA solder joint under different load-unload method (a) Creep depth-time curve of micro solder joint under step load-unloading test mode (b) Creep depth-time curve of micro solder joint under single load-unloading test mode
Fig.8  Expression of indentation creep
Solder joints Loading mode Creep Hardness/MPa Indentation creep CIT/%
Cu/SACBN/Cu Step loading-unloading Step 1 2373.74 38.97
Step 2 4962.69 20.19
Step 3 8784.51 15.67
Loading-unloading 4686.30 25.71
Table 1  The CIT and creep hardness of micro solder joints under different loading mode
Fig.9  The lnε˙-lnH relationship of Cu/SACBN/Cu by different load method (a) The lnε˙-lnH relationship of micro solder joint under step load-unloading test mode (b) The lnε˙-lnH relationship of micro solder joint under single load-unloading test mode
Solder joints Loading mode Stress index n
Cu/SACBN/Cu Step loading-unloading Step 1 6.41
Step 2 15.89
Step 3 20.53
Loading-unloading 15.72
Table 2  The creep stress index of Cu/SACBN/Cu by different loading mode
[1] Zhang X P, Yin L M, Yu C B.Research and application progress on electronic and photonic packaging and lead-free solder[J]. Chin. J. Mater. Res., 2009, 22(1): 1(张新平, 尹立孟, 于传宝. 电子和光子封装无铅钎料的研究和应用进展[J]. 材料研究学报, 2009, 22(1): 1)
[2] Yin L M, Li Z K, Liu B.Research on vibration fatigue behavior of micro solder joints under electromigration effects[J]. Electronic Components and Materials, 2011, 30(4): 63(尹立孟, 李镇康, 刘斌. 电迁移作用下的微焊点振动疲劳行为研究[J]. 电子元件与材料, 30(4): 63)
[3] Han Y D, Jing H Y, Nai S M L, et al. Creep mitigation in Sn-Ag-Cu composite solder with Ni-coated carbon nanotubes[J]. J. Mater. Sci.: Mater. Electron., 2011, 23(5): 1108
[4] Mohammad H, Muhannad M, Jeffrey C S.Characterization of aging effects in lead free solder joints using nanoindentation[J]. 2013 Electronic Components & Technology Conference, 2013, 166
[5] Mu D, Huang H, Mcdonald S D, et al.Creep and mechanical properties of Cu6Sn5 and (Cu, Ni)6Sn5 at elevated temperatures[J]. J. Electron. Mater., 2013, 42(2): 304
[6] Wang J X, Lai Z M, Sun D D.Experiment research of Sn-Cu-Ni solder joint by nanoindentation[J]. Transactions of the China Welding Institution, 2011, 32(12): 59(王俭辛, 赖忠民, 孙丹丹. Sn-Cu-Ni焊点纳米压痕试验分析[J]. 焊接学报, 2011, 32(12): 59
[7] Zhang Q Y, Zhuang H S.Brazing and Soldering Manual[M]. Beijing: China Machine Press, 2008(张启运, 庄鸿寿. 钎焊手册[M]. 北京: 机械工业出版社, 2007)
[8] Zhao J, Qi L, Wang X M, et al.Influence of Bi on microstructures evolution and mechanical properties in Sn-Ag-Cu lead-free solder[J]. J. Alloy. Compd., 2004, 375(1-2): 196
[9] Li G Y, Shi X Q.Effects of bismuth on growth of intermetallic compounds in Sn-Ag-Cu Pb-free solder joints[J]. Transaction of Nonferrous Society of China, 2006, 16(z1): 739
[10] Zhang L.Study on reliability of SnAgCu based lead-free soldered joint and related theory[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011(张亮. SnAgCu系无铅焊点可靠性及相关理论研究[D]. 南京: 南京航空航天大学, 2011)
[11] Li X, Sun F L, Liu Y, et al.The resistant of thermal shock and aging properties of SAC-Bi-Ni solder[A]. China Academic Journal Electronic Publishing House[C]. Beijing, 2012(李霞, 孙凤莲, 刘洋等. SAC-Bi-Ni 焊点抗热冲击及抗热时效性能研究[A]. 第八届全国材料科学与图像科技学术会议论文集[C]. 北京, 2012)
[12] Liu Y, Sun F L, Liu Y, et al.Effect of Ni, Bi concentration on the microstructure and shear behavior of low-Ag SAC-Bi-Ni/Cu solder joints[J]. J. Mater. Sci.: Mater. Electron., 2014, 25(6): 2627
[13] Gao F, Nishikawa H, Takemoto T, et al.Mechanical properties versus temperature relation of individual phases in Sn-3.0Ag-0.5Cu lead-free solder alloy[J]. Microelectron. Reliab., 2009, 49(3): 296
[14] Chromik R R, Vinci R P, Allen S L, et al.Measuring the mechanical properties of Pb-free solder and Sn-based intermetallics by nanoindentation[J]. J. Mine. Metals, Mater., 2003, 55(6): 1016
[15] Wang F J, Qian Y Y, Ma X.Research on the creep of SnAgCu lead-free solder by indentation method[A]. 2004 Chinese electronics manufacturing technology forum[C]. Beijing, 2004(王凤江, 钱乙余, 马鑫. SnAgCu无铅钎料焊点蠕变压痕法研究[A]. 2004 中国电子制造技术论坛[C]. 北京, 2004)
[16] Han Y D, Jing H Y, Nai S M L, et al. Temperature dependence of creep and hardness of Sn-Ag-Cu lead-free solder[J]. J. Electron. Mater., 2010, 39(2): 223
[17] BS EN ISO 14577-1-2015, Metallic materials. Instrumented indentation test for hardness and materials parameters. Part 1: Test method
[18] Mayo M J, Siegel R W, Narayanasamy A, et al.Mechanical properties of nanophase TiO2 as determined by nanoindentation[J]. J. Mater. Res., 1990, 5(5): 1073
[19] Liu Y C, Teo J W R, Tung S K, et al. High-temperature creep and hardness of eutectic 80Au/20Sn solder[J]. J. Alloy. Compd., 2007, 12142(1-2): 340
[20] Ma Z S, Long S G, Zhou Y C, et al.Indentation scale dependence of tip-in creep behavior in Ni thin films[J]. Scr. Mater., 2008, 59(2): 195
[21] Hsieh T H, Huang Y S, Shen M Y.Mechanical properties and toughness of carbon aerogel/epoxy polymer composites[J]. J Mater Sci, 2015, 50(8): 3258
[22] Mayo M J, Siegel R W, Liao Y X, et al.Nanoindentation of nanocrystalline ZnO[J]. J. Mater. Res., 1992, 7(4): 973
[23] Gao F, Nishikawa H, Takemoto T, et al.Mechanical properties versus temperature relation of individual phases in Sn-3.0Ag-0.5Cu lead-free solder alloy[J]. Microelectron. Reliab., 2009, 49(3): 296
[24] Mu X Y.Creep Mechanics[M]. Xi'an: Xi'an Jiaotong University Press, 1990(穆霞英. 蠕变力学[M]. 西安: 西安交通大学出版社, 1990)
[25] GB/T 22458-2008 General rules of instrumented nanoindentation test 22458-2008 General rules of instrumented nanoindentation test. Beijing: Standards Press of China, 2009(GB/T 22458-2008, 仪器化纳米压入试验方法通则 22458-2008, 仪器化纳米压入试验方法通则. 北京: 中国标准出版社, 2009)
[26] Han Y D, Jing H Y, Nai S M L,et al. Indentation size effect on the creep behavior of a SnAgCu solder[J]. Int. J. Mod. Phys. B, 2012, 24(24): 267
[27] El-Daly A A, El-Taher A M, Dalloul T R. Improved creep resistance and thermal behavior of Ni-doped Sn-3.0Ag-0.5Cu lead-free solder[J]. J. Alloy. Compd., 2014, 587(3): 32
[28] Cui Z Q, Qin Y C.The Metallography and Heat Treatment[M]. Beijing: China Machine Press, 2007(崔忠圻, 覃耀春. 金属学与热处理[M]. 北京: 机械工业出版社, 2007)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!