Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (12): 929-935    DOI: 10.11901/1005.3093.2018.190
ARTICLES Current Issue | Archive | Adv Search |
Effect of Modification with Nitrogen Functional Groups on Structure and Adsorption Performence of Biomass Active Carbon
Kunquan LI(), Boyu LI
(College of Engineering, Nanjing Agricultural University, Nanjing 210031, China)
Cite this article: 

Kunquan LI, Boyu LI. Effect of Modification with Nitrogen Functional Groups on Structure and Adsorption Performence of Biomass Active Carbon. Chinese Journal of Materials Research, 2018, 32(12): 929-935.

Download:  HTML  PDF(720KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nitrogen-doped bagasse biochar BAC-EDA was prepared via a two-step process, namely, the bagasse biochar was prepared with bagasse as raw material and phosphoric acid as modifying agent and then on which nitrogen-containing functional groups were further coupled with ethylenediamine as dressing agent. The pore structure of BAC and BAC-EDA was characterized by means of BET, BJH and t-plot methods based on the experimental data of liquid nitrogen adsorption/desorption. Meanwhile acidic groups were characterized by FTIR method. Results show that pores of biochar BAC and BAC-EDA are mainly of mesopores with a small amount of micropores. There existed oxygen-containing acidic functional groups on the surface the nitrogen-doped bagasse biochar BAC-EDA, such as carboxyl groups, lactone groups and amino nitrogen-containing functional groups etc. The proportions of the micro-mesopores of the biomass carbon are constant before and after modification, which indicating that the introduction of the functional groups is realized simultaneously on the surface of both the micro- and meso-pores. Adsorption experiments show that the maximum adsorption amount of the modified BAC-EDA is 137 mg·g-1, much higher than that of the plain BAC 73 mg·g-1, indicating that the nitric acidoxidation and ethylenediamine modification effectively improve the adsorption capacity of biomass biochar. The Langmuir model can better describe the adsorption of Hg(Ⅱ) by BAC-EDA, further illustrating the homogeneity of the active sites of the modified carbon. Besides, the temperature is conducive to adsorption, showing that the process is a spontaneous endothermic process.

Key words:  composite      nitric functionalization      oxidative condensation      ethylenediamine      adsorption     
Received:  08 March 2018     
Fund: Supported by National Natural Science Foundation of China (No. 21876086) and the Key R & D Program of Jiangsu Province (No. BE2018708)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.190     OR     https://www.cjmr.org/EN/Y2018/V32/I12/929

Fig.1  Adsorption-desorption at low temperature isotherms (a) and DFT pore size distributions (b) of bagasse carbon BAC and BAC-EDA
Sample SBET/m2·g-1 Vmicroporous/cm3·g-1 Vmesoporous/cm3·g-1 Dpore/nm
BAC 978 0.049 1.08 4.97
BAC-EDA 435 0.014 0.385 4.03
Tab1e 1  Pores structure characteristics of bagasse carbon
Fig.2  Spectra of bagasse carbon BAC and BAC-EDA
Fig.3  Effect of modification on Hg(Ⅱ) adsorption
Fig.4  Isothermal adsorption of Hg(Ⅱ) on BAC-EDA
Isothermal curves Constant BAC-EDA
25℃ 35℃ 45℃
Langmuir
qe=kq0ce/(1+kce)
q0/mg·g-1 224.8 254.8 500.48
k/L·mg-1 3.63 3.93 1.67
R2 0.975 0.953 0.934
Freundlich
qe=kFce1/n
kF/L·mg-1 218.2 273.6 428.6
n 1.85 1.73 1.31
R2 0.913 0.889 0.92
Table 2  Isothermal adsorption of Hg (Ⅱ) by bagasse carbon BAC-EDA
Adsorbent Maximum adsorption amount
/mg·g-1
Optimum pH
Dithizone-immobilized Natiral
zeolite[23]
2.62 8
Powdered activatel carbon[24] 3.02 10.6
Modified zeolite[25] 3.3 6
Fe3O4 magnetic nanographene[26] 35 8
TiO2 titanate nanotube[27] 121 10
BAC-EDA 137 6
Table 3  Comparison of Hg (II) adsorption between BAC-EDA and common activated carbon
[1] Lu G H, Yue C S, Peng B, et al.Review of research progress on the remediation technology of mercury contaminated soil[J]. Chin. J. Eng., 2017, 39: 1(卢光华, 岳昌盛, 彭犇等. 汞污染土壤修复技术的研究进展[J]. 工程科学学报, 2017, 39: 1)
[2] Wang S L, Wu W.Research progress of soil mercury pollution in Guizhou[J]. Technol. Innov. Appl., 2017, (27): 173(王时亮, 吴维. 贵州土壤汞污染生态研究进展[J]. 科技创新与应用, 2017, (27): 173)
[3] Xu J Y, Bravo A G, Lagerkvist A, et al.Sources and remediation techniques for mercury contaminated soil[J]. Environ. Int., 2015, 74: 42
[4] Ma Y F, Wu X Y, Xue X M.Present situation and screening strategies of remediation technology for mercury-contaminated soil[J]. Environ. Sci. Manage., 2015, 40(12): 107(马跃峰, 武晓燕, 薛向明. 汞污染土壤修复技术的发展现状与筛选流程研究[J]. 环境科学与管理, 2015, 40(12): 107)
[5] Liu Y Z, Gao J C, Sui Z Y, et al.Application progresses of microelectrolysis technology in industrial wastewater treatment[J]. Environ. Protect. Chem. Industry, 2017, 37: 136(刘雨知, 高嘉聪, 隋振英等. 微电解技术在工业废水处理中的应用进展[J]. 化工环保, 2017, 37: 136)
[6] Mohammadi A, Daemi H, Barikani M.Fast removal of malachite green dye using novel superparamagnetic sodium alginate-coated Fe3O4 nanoparticles[J]. Int. J. Biol. Macromol., 2014, 69: 447
[7] Wu X B, Wu D C, Fu R W, et al.Preparation of carbon aerogels with different pore structures and their fixed bed adsorption properties for dye removal[J]. Dyes Pigm., 2012, 95: 689
[8] Liang J F.Preparation of functional ordered mesoporous carbon materials and their applications in catalysis for nitrobenes [D]. Taiyuan: Shanxi University, 2017(梁继芬. 改性有序介孔碳材料的制备及在催化硝基芳烃的应用研究 [D]. 太原: 山西大学, 2017)
[9] Su X L, Yang Q, Cui D N, et al.Adsorption of uranium (VI) on polyacrylonitrile/orderly mesoporous carbon composites[J]. Jiangxi Chem. Industry, 2015, (2): 89(苏晓龙, 杨倩, 崔丹妮等. 聚丙烯腈/有序介孔碳复合材料吸附铀(Ⅵ)的性能研究[J]. 江西化工, 2015, (2): 89)
[10] Fu T, Ling X J, Ding Y, et al.Adsorption performance analysis of modified mesoporous carbon on three indexs in drinking water[J]. Environ. Sci. Technol., 2017, 40(10): 49(付婷, 凌小佳, 丁莹等. 改性介孔碳对饮用水中3种指标吸附性能分析[J]. 环境科学与技术, 2017, 40(10): 49)
[11] Pan X C, Tang J, Xue H R, et al.Synthesis and electrocatalytic performance of N-doped ordered mesoporous carbon-Ni nanocomposite[J]. Chin. J. Inorg. Chem., 2015, 31: 282(潘旭晨, 汤静, 薛海荣等. 氮掺杂有序介孔碳-Ni纳米复合材料的制备及电化学性能[J]. 无机化学学报, 2015, 31: 282)
[12] Liu M D, Li S Z, Yang D H.Biomass derived amino-functionalized carbonaceous materials for Hg2+ removal[J]. Appl. Chem. Industry, 2013, 42: 1035(刘明灯, 李守柱, 杨丹红. 氨基化生物质炭吸附水中汞离子性能研究[J]. 应用化工, 2013, 42: 1035)
[13] Li K Q, Yang M R, Wang Y J, et al.Preparation of amine-modified mesoporous activated carbon and its adsorption of lead(II) from aqueous solution[J]. China Environ. Sci., 2014, 34: 1985(李坤权, 杨美蓉, 王燕锦等. 新型胺化介孔炭的制备及其对Pb(II)的吸附[J]. 中国环境科学, 2014, 34: 1985)
[14] Li L H, Ma M M, Ren Q J, et al.Adsorption of rhodamine B on carboxylated ordered mesoporous carbon[J]. Environ. Protect. Chem. Industry, 2016, 36: 157(李丽华, 马明明, 任庆军等. 羧基化改性有序介孔碳对罗丹明B的吸附[J]. 化工环保, 2016, 36: 157)
[15] Yang X N, Lira C T. Modeling of adsorption on porous activated carbons using SLD-ESD model with a pore size distribution [J]. Chem. Eng. J., 2012, 195-196: 314
[16] Chen T, Wang T, Wang D J, et al.Selective adsorption behavior of Cu(II) and Cr(VI) heavy metal ions by functionalized ordered mesoporous carbon[J]. Acta Phys. -Chim. Sin., 2010, 26: 3249(陈田, 王涛, 王道军等. 功能化有序介孔碳对重金属离子Cu(Ⅱ)、Cr(Ⅵ)的选择性吸附行为[J]. 物理化学学报, 2010, 26: 3249)
[17] Li K Q, Jiang Y, Wang X H, et al.Effect of nitric acid modification on the lead(II) adsorption of mesoporous biochars with different mesopore size distributions[J]. Clean Technol. Environ. Policy, 2016, 18: 797
[18] Li N, Han Y M, Xu J X, et al.The surface modification of ordered mesoporous carbon and its supercapacitive behaviors[J]. J. Funct. Mater., 2015, 46(suppl.): 25(李娜, 韩一明, 许建雄等. 有序介孔碳材料的表面改性及电化学性能研究[J]. 功能材料, 2015, 46(suppl.): 25)
[19] Li K Q, Li Y, Zheng Z, et al.Preparation, charcterization and adsorption performance of mesoporous cotton stalk activated carbon with narrow pore size distribution[J]. Environ. Chem., 2013, 32: 2134(李坤权, 李烨, 郑正等. 窄孔径中孔棉秆活性炭的制备与性能表征[J]. 环境化学, 2013, 32: 2134)
[20] Zhai B, Gao Y.Application of mesoporous carbon and modified mesopo-rous carbon for the research on treatment of NPEOs[J]. Environ. Sci. Technol., 2017, 30(1): 10(翟彬, 高雅. 介孔碳及其改性材料对壬基酚聚氧乙烯醚吸脱附性能的研究[J]. 环境科技, 2017, 30(1): 10)
[21] Liang L, Zhu Q C, Shi L, et al.The efficient removal of dyes over magnetic Ni embedded on mesoporous graphitic carbon material[J]. J. Por. Mater., 2014, 21: 985
[22] Liu F, Zhang S, Li J M, et al.Comparative research on modified mesoporous carbon and activated carbon in wastewater adsorption experiments[J]. Exp. Technol. Manage., 2017, 34(7): 31(刘芳, 张双, 李佳蔓等. 改性介孔碳和活性炭在废水吸附实验中的对比研究[J]. 实验技术与管理, 2017, 34(7): 31)
[23] Mudasir M, Karelius K, Aprilita N H, et al.Adsorption of mercury(II) on dithizone-immobilized natural zeolite[J]. J. Environ. Chem. Eng., 2016, 4: 1839
[24] Zhou G, Liu W J, Feng Z M, et al.Study on mercury adsorption by powdered activated carbon for the heavy metals[J]. Water Wastewater Eng., 2013, 39(5): 120(周刚, 刘文君, 冯兆敏等. 吸附重金属用活性炭对汞的去除特性研究[J]. 给水排水, 2013, 39(5): 120)
[25] Zhu X H, Chen X M, Yang W, et al.Characterization of trace mercury adsorption by modified zeolite[J]. Chin. J. Environ. Eng., 2016, 10: 6261(朱保虎, 陈小敏, 杨文等. 改性沸石对水中微量汞的吸附性能[J]. 环境工程学报, 2016,, 10: 6261)
[26] Zhu H, Zhou C, Wang Q, et al.Synthesis of Fe3O4 magnetic graphene oxide nanocomposite and its adsorption for Mercury (II)[J]. Technol. Water Treat., 2018, 44(1): 48(朱鹤, 周超, 王钦等. Fe3O4磁性纳米氧化石墨烯制备及对汞(II)的吸附[J]. 水处理技术, 2018, 44(1): 48)
[27] López-Mu?oz M J, Arencibia A, Cerro L, et al. Adsorption of Hg(II) from aqueous solutions using TiO2 and titanate nanotube adsorbents[J]. Appl. Surf. Sci., 2016, 367: 91
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[5] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[10] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[11] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[12] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[13] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[14] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
No Suggested Reading articles found!