Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (12): 921-928    DOI: 10.11901/1005.3093.2018.163
ARTICLES Current Issue | Archive | Adv Search |
Self-lubricating Wear Resistant Composite Coating Ti-Ni+TiN+MoS2/TiS Prepared on Ti-6Al-4V Alloy by Laser Cladding
Qiushi GAO1,2, Hua YAN1,2(), Yang QIN1,2, Peilei ZHANG1,2, Zhengfei CHEN1,2, Jialong GUO1,2, Zhishui YU1,2
1 Shanghai University of Engineering Science, College of Materials Engineering, Shanghai 201620, China
2 Shanghai Collaboratme Innovation Center of Laser Advanced Manufacturing Technology, Shanghai 201620, China
Cite this article: 

Qiushi GAO, Hua YAN, Yang QIN, Peilei ZHANG, Zhengfei CHEN, Jialong GUO, Zhishui YU. Self-lubricating Wear Resistant Composite Coating Ti-Ni+TiN+MoS2/TiS Prepared on Ti-6Al-4V Alloy by Laser Cladding. Chinese Journal of Materials Research, 2018, 32(12): 921-928.

Download:  HTML  PDF(8862KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A self-lubricating composite coating of Ti-Ni+TiN+MoS2/TiS with TiN, TiMo and Ti2Ni as reinforcement phases, while MoS2 and TiS as lubricant phases, was fabricated on Ti-6Al-4V alloy by laser cladding with composite alloy powder of NiCrBSi, TiN and Ni-coated MoS2 as cladding materials. The phase compositions, microstructure, microhardness and tribological properties of the coating were characterized by X-ray diffractometer (XRD), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), microhardness tester and multi-purpose friction and wear testing machine,respectively. Results show that the mean microhardness of the composite coating (between 1060 and 1140HV0.3) is about 3 times higher than that of the substrate (370HV0.3). Due to the combined effect of hard reinforcing phases TiN, TiMo, and Ti-Ni, as well as lubricating phases MoS2 and TiS, the friction coefficient (0.3199) and the wear mass loss (2.2 mg) of the composite coating are both lower than those of the substrate (0.3535 and 11.8 mg). Therefore, the prepared composite coating has good self-lubricating wear resistance.

Key words:  surface and interface in the materials      laser cladding      composite coatings      titanium alloy      self-lubricating wear resistance     
Received:  09 February 2018     
Fund: Supported by National Natural Science Foundation of China (Nos. 51405288 & 51605276), Technology Innovation Action Plan Project of Shanghai (Nos. 17JC1400600 & 17JC1400601), Graduate Student Innovation Project of Shanghai University of Engineering Science (No. 17KY0503)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.163     OR     https://www.cjmr.org/EN/Y2018/V32/I12/921

Element Al V O H N C Fe Ti
Composition 6.3 4.2 0.20 0.01 0.05 0.30 0.30 Bal.
Table 1  Chemical composition of Ti-6Al-4V substrate (mass fraction, %)
Element B C Cr Fe Mn Mo Si Ni
Composition 3.30 0.72 15.10 3.77 0.01 0.02 4.10 Bal.
Table 2  Chemical composition of NiCrBSi powders (mass fraction, %)
Sample
Number
NiCrBSi TiN Ni clad MoS2
N1 33.4 33.3 33.3
N2 50 25 25
N3 66.6 16.7 16.7
Table 3  Composition of the pre-mixed power (mass fraction, %)
Fig.1  Cross-section (a) and bonded area (b) SEM images of the composite coating
Fig.2  X-ray diffraction pattern of composite coating
Fig.3  SEM micrographs of microstructure of the composition coating. N1: (a~c), N2: (d~f), N3: (g~i); upper (a, d, g), middle (b, e, h), bottom (i), high magnification (c, f)
Fig.4  SEM and EDS analysis of the composite coating (a) N1; (b) N2
Fig.5  Microhardness profile of the composite coating
Fig.6  Coefficient of friction of the composite coating at room temperature
Fig.7  Wear mass loss of the composite coating and substrate
Fig.8  SEM micrographs showing the worn surface morphologies of the composite coating and substrate (a) substrate; (b) N1; (c) N2; (d) N3
[1] Fan H M, Liu H Q, Meng X J, et al.Study on Ni-based high-temperature self-lubricating wear resistant composite coating on Ti6Al4V by laser cladding[J]. Mater. Rev., 2013, 27(12): 102(范红梅, 刘海青, 孟祥军等. Ti6Al4V合金激光熔覆镍基高温自润滑耐磨复合涂层研究[J]. 材料导报, 2013, 27(12): 102)
[2] Liu H Q, Liu X B, Meng X J, et al.Study on γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS high-temperature self-lubricating wear resistant composite coating on Ti-6Al-4V by laser cladding[J]. Chin. J. Lasers, 2014, 41(3): 303005(刘海青, 刘秀波, 孟祥军等. Ti-6Al-4V合金激光熔覆γ-NiCrAlTi/TiC+TiWC2/CrS+Ti2CS高温自润滑耐磨复合涂层研究[J]. 中国激光, 2014, 41(3): 303005 )
[3] Zhai Y J, Liu X B, Qiao S J, et al.Characteristics of laser clad α-Ti/TiC+(Ti,W)C1-x/Ti2SC+TiS composite coatings on TA2 titanium alloy[J]. Opt. Laser Technol., 2017, 89: 97
[4] Shan X H, Wang C S, Yu Q.Microstructure and property of Nb-Al-Ti high temperature alloy coatings by laser cladding on Ti alloy surfaces[J]. Chin. J. Lasers, 2016, 43(8): 802015(单晓浩, 王存山, 于群. 钛合金表面激光熔覆Nb-Al-Ti高温合金涂层组织与性能[J]. 中国激光, 2016, 43(8): 802015 )
[5] Sun R L, Niu W, Wang C Y.Microstructure and wear resistance of TiN-NiCrBSi laser clad layer on titanium alloy surface[J]. Rare Metal Mater. Eng., 2007, 36: 7(孙荣禄, 牛伟, 王成扬. 钛合金表面激光熔覆TiN-Ni基合金复合涂层的组织和磨损性能[J]. 稀有金属材料与工程, 2007, 36: 7)
[6] Wang Y, Li J L, Dang C Q, et al.Influence of carbon contents on the structure and tribocorrosion properties of TiSiCN coatings on Ti6Al4V[J]. Tribol. Int., 2017, 109: 285
[7] Lu X L, Liu X B, Yu P C, et al.Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding[J]. Opt. Laser Technol., 2016, 78: 87
[8] Arias-González F, del Val J, Comesa?a R, et al. Fiber laser cladding of nickel-based alloy on cast iron[J]. Appl. Surf. Sci., 2016, 374: 197
[9] Yan H, Zhang P L, Yu Z S, et al.Microstructure and tribological properties of laser-clad Ni-Cr/TiB2 composite coatings on copper with the addition of CaF2[J]. Surf. Coat. Technol., 2012, 206: 4046
[10] Song L J, Xiao H, Ye J Y, et al.Direct laser cladding of layer-band-free ultrafine Ti6Al4V alloy[J]. Surf. Coat. Technol., 2016, 307: 761
[11] Farayibi P K, Folkes J, Clare A, et al.Cladding of pre-blended Ti-6Al-4V and WC powder for wear resistant applications[J]. Surf. Coat. Technol., 2011, 206: 372
[12] Lin Y C, Lin Y C, Chen Y C.Evolution of the microstructure and tribological performance of Ti-6Al-4V cladding with TiN powder[J]. Mater. Des., 2012, 36: 584
[13] Yu P C, Liu X B, Lu X L, et al.High-temperature tribological properties of laser clad composite coatings on Ti6Al4V alloy[J]. Tribology, 35: 737(余鹏程, 刘秀波, 陆小龙等. Ti6Al4V合金表面激光熔覆复合涂层的高温摩擦学性能研究[J]. 摩擦学学报, 2015, 35: 737)
[14] Weng F, Yu H J, Chen C Z, et al.Microstructures and properties of TiN reinforced Co-based composite coatings modified with Y2O3 by laser cladding on Ti-6Al-4V alloy[J]. J. Alloys Compd., 2015, 650: 178
[15] Sun R L, Lei Y W, Niu W.Laser clad TiC reinforced NiCrBSi composite coatings on Ti-6Al-4V alloy using a CW CO2 laser[J]. Surf. Coat. Technol., 2009, 203: 1395
[16] Lu X L, Liu X B, Yu P C, et al.Effects of annealing on laser clad Ti2SC/CrS self-lubricating anti-wear composite coatings on Ti6Al4V alloy: microstructure and tribology[J]. Tribol. Int., 2016, 101: 356
[17] Wei P, Wei Z Y, Chen Z, et al.The AlSi10Mg samples produced by selective laser melting: single track, densification, microstructure and mechanical behavior[J]. Appl. Surf. Sci., 2017, 408: 38
[18] Lv Y H, Li J, Tao Y F, et al.High-temperature wear and oxidation behaviors of TiNi/Ti2Ni matrix composite coatings with TaC addition prepared on Ti6Al4V by laser cladding[J]. Appl. Surf. Sci., 2017, 402: 478
[19] Zhang P L, Liu X P, Lu Y L, et al.Microstructure and wear behavior of Cu-Mo-Si coatings by laser cladding[J]. Appl. Surf. Sci., 2014, 311: 709
[1] WANG Qian, PU Lei, JIA Caixia, LI Zhixin, LI Jun. Inhomogeneity of Interface Modification of Carbon Fiber/Epoxy Composites[J]. 材料研究学报, 2023, 37(9): 668-674.
[2] LU Yimin, MA Lifang, WANG Hai, XI Lin, XU Manman, YANG Chunlai. Carbon-base Protective Coating Grown by Pulsed Laser Deposition on Copper Substrate[J]. 材料研究学报, 2023, 37(9): 706-712.
[3] FENG Ye, CHEN Zhiyong, JIANG Sumeng, GONG Jun, SHAN Yiyin, LIU Jianrong, WANG Qingjiang. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. 材料研究学报, 2023, 37(7): 523-534.
[4] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[5] CHEN Zhipeng, ZHU Zhihao, SONG Mengfan, ZHANG Shuang, LIU Tianyu, DONG Chuang. An Ultra-high-strength Ti-Al-V-Mo-Nb-Zr Alloy Designed from Ti-6Al-4V Cluster Formula[J]. 材料研究学报, 2023, 37(4): 308-314.
[6] ZHANG Ruixue, MA Yingjie, JIA Yandi, HUANG Sensen, LEI Jiafeng, QIU Jianke, WANG Ping, YANG Rui. Microstructure Evolution and Element Partitioning Behavior during Heat-treatment in Metastable β Titanium Alloy[J]. 材料研究学报, 2023, 37(3): 161-167.
[7] TIAN Zhigang, LI Xinmei, QIN Zhong, WANG Xiaohui, LIU Weibin, HUNG Yong. Microstructure and Wear Resistance of CoCrFeNiTi x High Entropy Alloy Coating[J]. 材料研究学报, 2023, 37(3): 219-227.
[8] CHEN Kaiwang, ZHANG Penglin, LI Shuwang, NIU Xianming, HU Chunlian. High-temperature Tribological Properties for Plasma Spraying Coating of Ni-P Plated Mullite Powders[J]. 材料研究学报, 2023, 37(1): 39-46.
[9] WANG Wei, ZHOU Shanqi, GONG Penghui, ZHANG Haoze, SHI Yaming, WANG Kuaishe. Effect of Anneal Treatment on Microstructure, Texture and Mechanical Properties of TC4 Alloy Plates[J]. 材料研究学报, 2023, 37(1): 70-80.
[10] SHAN Weiyao, WANG Yongli, LI Jing, XIONG Liangyin, DU Xiaoming, LIU Shi. High Temperature Oxidation Resistance of Cr Based Coating on Zirconium Alloy[J]. 材料研究学报, 2022, 36(9): 699-705.
[11] CAI Yusheng, HAN Hongzhi, REN Dechun, JI Haibin, LEI Jiafeng. Effect of Chemical Etching Process on Surface Roughness of TC4 Ti-alloy Fabricated by Laser Selective Melting[J]. 材料研究学报, 2022, 36(6): 435-442.
[12] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[13] WANG Jun, WANG Kelu, LU Shiqiang, LI Xin, OUYANG Delai, QIU Qian, GAO Xin, ZHANG Kaiming. Strain Compensation Physical Constitutive Model and Processing Map of TA5 Titanium Alloy[J]. 材料研究学报, 2022, 36(3): 175-182.
[14] ZHANG Hongliang, ZHAO Guoqing, OU Junfei, Amirfazli Alidad. Superhydrophobic Cotton Fabric Based on Polydopamine via Simple One-Pot Immersion for Oil Water Separation[J]. 材料研究学报, 2022, 36(2): 114-122.
[15] LIU Zhiduo, ZHANG Haoyu, CHENG Jun, ZHOU Ge, ZHANG Xingjun, CHEN Lijia. Effect of Heat Treatment on Tensile Property of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy[J]. 材料研究学报, 2022, 36(12): 919-925.
No Suggested Reading articles found!