Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (12): 913-920    DOI: 10.11901/1005.3093.2018.140
ARTICLES Current Issue | Archive | Adv Search |
Effect of Aspirin on Structure of Polycaprolactone Carried Materials and Controlled-release Performance
Shuqiong LIU(), Ruilai LIU, Ruiye RAO
(Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, Wuyishan 354300, China)
Cite this article: 

Shuqiong LIU, Ruilai LIU, Ruiye RAO. Effect of Aspirin on Structure of Polycaprolactone Carried Materials and Controlled-release Performance. Chinese Journal of Materials Research, 2018, 32(12): 913-920.

Download:  HTML  PDF(3955KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A series of controlled-release composites of polycapolactone (PCL)/aspirin(ASA) were fabricated via chemically induced phase separation technique with polycapolactone as carrier. The effect of different content of ASA on the morphology, biological activity, hydrophilic performance, porosity and controlled-release performance of the composites were investigated. Results show that the addition of the ASA played a crucial role for forming the unique nanofibrous structure of PCL/ASA composite. The nanofibrous structure of composite fades away with the increasing amount of ASA. The hydrophilic performance increases from 38.00% to 59.34% and the porosity decreases from 96.67% to 52.28% with the increasing ASA-content. Furthermore, both of the pure PCL and PCL/ASA composite all present good biological activity, in other word, both of the nanofibrous structure and ASA all exhibit effect on the biological activity of composite materials. The controlled release of the ASA relates to the structure of PCL/ASA composite, and the accumulated release amount of the PCL/ASA composite with micro- and nano-structure can reach to 25.23% over an equal period of time.

Key words:  composite      polycaprolactone      aspirin      structure      controlled release     
Received:  31 January 2018     
Fund: Supported by National Natural Science Foundation of China (No. 51406141), Project of Fujian Provincial Key Laboratory of Eco-Industrial Green Technology (No. WYKF2017-10)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.140     OR     https://www.cjmr.org/EN/Y2018/V32/I12/913

Fig.1  Process of PCL/ASA nanofiber composite
Fig.2  Scanning electron micrographs of PCL/ASA composites prepared with different ASA ratio (a, b) 0; (c, d) 5%; (e, f) 10% ; (g, h) 15%
Fig.3  FTIR spectra of pure ASA and PCL/ASA composites prepared with different ASA ratio (a) pure ASA; (b) 15%; (c) 10%; (d) 5%; (e) pure PCL
Fig.4  Scanning electron micrographs of the PCL /ASA composites immersed in SBF with 7~14 d (a) 7 d, 0 ASA; (b) 7 d, 5% ASA; (c) 7 d, 10% ASA; (d) 7 d, 15% ASA; (e) 14 d, 0 ASA; (f) 14 d, 5% ASA
Fig.5  FTIR spectra of PCL/ASA (5%) composite after immersed in 1.5 SBF for (a) 0 d and (b) 7 d
ASA/%, mass fraction Porosity/% Water absorbing
rate/%
0 96.67 38.00
5 73.89 44.55
10 72.31 55.34
15 52.28 59.34
Table 1  Porosity and water absorbing rate of PCL/ASA compowite with different content of ASA
Fig.6  Standard curve equation graph of ASA
Fig.7  Effect of different content of ASA on the controlled-release performance of the PCL/ASA composite
[1] Zou F D.Study on fabrication of POC/PLA nanofiber material by electrospinning [D]. Shanghai: Donghua University, 2017(邹方东. 静电纺丝法制备POC/PLA纳米纤维材料的研究 [D]. 上海: 东华大学, 2017)
[2] Su Y J.Preparation of starch-polyvinyl alcohol nanofiber membrane and its slow and control release property [D]. Changchun: Jilin Agricultural University, 2015(苏瑛杰. 淀粉—聚乙烯醇纳米纤维膜的制备及缓控释性能研究 [D]. 长春: 吉林农业大学, 2015)
[3] Li X Y, Yang Q, Ouyang J, et al.Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier[J]. Appl. Clay Sci., 2016, 126: 306
[4] Zhang J, Ma S, Liu Z, et al.Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin-loaded chitosan nanoparticles[J]. Int. J. Nanomedicine, 2017, 12: 8855
[5] Di L J, Chen Y X, Zhao K, et al.Aspirin for the chemoprevention of colorectal adenomas: a Meta-analysis[J]. Chongqing Med., 2011, 40: 1889(狄连君, 陈有享, 赵逵等. 阿司匹林预防结直肠腺瘤的Meta分析[J]. 重庆医学, 2011, 40: 1889)
[6] Song N, Chen S, Huang X.Immobilization of catalase by using Zr(IV)-modified collagen fiber as the supporting matri[J]. Process Biochem., 2011, 46: 2187
[7] Huang X J, Yu A G, Jiang J, et al.Surface modification of nanofibrous poly(acrylonitrile-co-acrylic acid) membrane with biomacromolecules for lipase immobilization[J]. J. Mol. Catal. Enzym., 2009, 57B: 250
[8] Liu K, Li X F, Li X M, et al.Lowering the cationic demand caused by PGA in papermaking by solute adsorption and immobilized pectinase on chitosan beads[J]. Carbohyd. Polym., 2010, 82: 648
[9] Schmidt T F, Casel L, dos Santos David S Jr, et al. Enzyme activity of horseradish peroxidase immobilized in chitosan matrices in alternated layers[J]. Mater. Sci. Eng., 2009, 29C: 1889
[10] Wei A F.Fabrication and properties of the composite nanofiber scaffold loaded with drugs [D]. Jiangsu: Jiangnan University, 2012(魏安方. 复合纳米纤维支架载药体系的构建与性能研究 [D]. 江苏: 江南大学, 2012)
[11] Wei A F, Wang J, Wang X Q, et al.Preparation and characterization of the electrospun nanofibers loaded with clarithromycin[J]. J. Appl. Polym. Sci., 2010, 118: 346
[12] Song B T, Wu C T, Chang J.Dual drug release from electrospun poly(lactic-co-glycolic acid)/mesoporous silica nanoparticles composite mats with distinct release profiles[J]. Acta Biomater., 2012, 8: 1901
[13] Xie J W, Marijnissen J C M, Wang C H. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro[J]. Biomaterials, 2006, 27: 3321
[14] Verreck G, Chun I, Rosenblatt J, et al.Incorporation of drugs in an amorphous state into electrospun nanofibers composed of a water-insoluble, nonbiodegradable polymer[J]. J. Controlled Release, 2003, 92: 349
[15] Zhang S F, Feng Y K, Zhang L, et al.Biodegradable polyesterurethane networks for controlled release of aspirin[J]. J. Appl. Polym. Sci., 2010, 116: 861
[16] Jiang Y Y.Preparation and property study of electrospun drug-loaded PLA/SF composite membranes [D]. Jiangsu: Jiangnan University, 2012(蒋岩岩. 载药PLA/SF复合纳米纤维膜的制备及性能研究 [D]. 江苏: 江南大学, 2012)
[17] Xiao C.The study of polyethylene glycol-aspirin solw release [D]. Ganzhou: Gannan Normal University, 2012(肖琛. 聚乙二醇—阿司匹林缓释药物的研究 [D]. 赣州: 赣南师范学院, 2012)
[18] Lu J Z.Preparation and characterization of ASA-β-cyclodextrin inclusion complexes-loaded PLGA microspheres for sustainde release [D]. Changchun: Jilin University, 2016(卢建忠. 载阿司匹林-β-环糊精包合物PLGA微球的制备及表征检测 [D]. 长春: 吉林大学, 2016)
[19] Dash T K, Konkimalla V B.Poly-?-caprolactone based formulations for drug delivery and tissue engineering: a review[J]. J. Controlled Release, 2012, 158: 15
[20] Wen C X, Zhou Y, Zhou C, et al.Enhanced radiosensitization effect of curcumin delivered by PVP-PCL nanoparticle in lung cancer[J]. J. Nanomater., 2017, 2017: 9625909
[21] Duncan R.Polymer conjugat esasanti cancer nanomedicines[J]. Nat. Rev. Cancer, 2006, 6: 688
[22] Di L, Kerns E H.Drug-Like Properties: Concepts, Structure Design and Methods from ADME to Toxicity Optimization [M]. 2nd Ed. USA: Academic Press, 2016
[23] Flores F C, Rosso R S, Cruz L, et al.An innovative polysaccharide nanobased nail formulation for improvement of onychomycosis treatment[J]. Eur. J. Pharm. Sci., 2017, 100: 56
[24] Liu S Q, Xiao X F, Liu R F, et al.Fabrication of poly (L-lactic acid) nanofibrous scaffolds by thermally induced phase separation[J]. Chem. J. Chin. Univ., 2011, 32: 372(刘淑琼, 肖秀峰, 刘榕芳等. 热致相分离制备聚乳酸纳米纤维支架[J]. 高等学校化学学报, 2011, 32: 372)
[25] Xu C Y, Inai R, Kotaki M, et al.Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering[J]. Biomaterials, 2004, 25: 877
[26] Liu S Q, Xiao X F.Cytocompatibility of PCL/PVP composite nanofibrous scaffolds[J]. Chin. J. Mater. Res., 2014, 28: 769(刘淑琼, 肖秀峰. PVP/PCL纳米纤维复合支架的生物活性[J]. 材料研究学报, 2014, 28: 769)
[27] Cüneyt Tas A.Synthesis of biomimetic Ca-hydroxyapatite powders at 37℃ in synthetic body fluids[J]. Biomaterials, 2000, 21: 1429
[28] Liu X R, Cao Y, Chen L, et al.Crystallization behavior of nanosized hydroxyapatite- poly (ε-caprolactone) composite biomaterials[J]. J. Hefei Univ. Technol.(Nat. Sci.), 2007, 30: 1462(刘晓荣, 曹阳, 陈蕾等. 纳米HA-PCL复合生物材料的结晶行为研究[J]. 合肥工业大学学报(自然科学版), 2007, 30: 1462)
[29] Xu Y Z, He D, Xiao X F, et al.Preparation and bioactivity of hydroxyapatite/polycaprolacton composites[J]. J. East China Univ. Sci. Technol.( Nat. Sci. Ed.), 2006, 32: 709(徐艺展, 何丹, 肖秀峰等. 羟基磷灰石/聚己内酯生物复合材料的制备及其生物活性[J]. 华东理工大学学报(自然科学版), 2006, 32: 709)
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[5] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[6] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[7] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[8] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[9] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[10] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[11] SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. 材料研究学报, 2023, 37(6): 443-452.
[12] LEI Zhiguo, WEN Shengping, HUANG Hui, ZHANG Erqing, XIONG Xiangyuan, NIE Zuoren. Influence of Rolling Deformation on Microstructure and Mechanical Properties of Al-2Mg-0.8Cu(-Si) Alloy[J]. 材料研究学报, 2023, 37(6): 463-471.
[13] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[14] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[15] XIA Bo, WANG Bin, ZHANG Peng, LI Xiaowu, ZHANG Zhefeng. Effect of Tempering Temperature on Microstructure and Impact Properties of Two High-strength Leaf Spring Steels[J]. 材料研究学报, 2023, 37(5): 341-352.
No Suggested Reading articles found!