Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (12): 881-888    DOI: 10.11901/1005.3093.2018.358
ARTICLES Current Issue | Archive | Adv Search |
Effect of Recrystallization Fraction on Quench Sensitivity of Al-Zn-Mg-Cu Alloy
Chengbo LI1,2(), Yunlai DENG1, Jianguo TANG1, Jianxiang LI2, Xinming ZHANG1
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Guangdong Hoshion Industrial Aluminium Co. Ltd., Zhongshan 528463, China
Cite this article: 

Chengbo LI, Yunlai DENG, Jianguo TANG, Jianxiang LI, Xinming ZHANG. Effect of Recrystallization Fraction on Quench Sensitivity of Al-Zn-Mg-Cu Alloy. Chinese Journal of Materials Research, 2018, 32(12): 881-888.

Download:  HTML  PDF(9074KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of recrystallization fraction on quench sensitivity of Al-Zn-Mg-Cu alloys was investigated by means of thermal compression test, optical microscopy, and high-resolution transmission electron microscopy. Results show that the quench sensitivity, the size and area fraction of equilibrium phase for 7050 alloy increases with the increase of recrystallization fraction. The area fraction of recrystallization has a good linear correlation with the area fraction of equilibrium phase. When the recrystallization fraction increases from 10% to 58%, the relative hardness value increases from 7% to 17%, the length and thickness of the equilibrium phase increase from 265 nm and 35 nm to 422 nm and 82 nm, respectively, while the area fraction of the equilibrium phase also increases from 6.5% to 28.4%. The Al3Zr particles in the sub-grained crystals have good coherency with the matrix, which are unfavorable to the equilibrium precipitation during the slow quenching process. However, the Al3Zr particles in the recrystallized grains are beneficial to the equilibrium precipitation. The more recrystallization fractions, the more Al3Zr particles that are incoherent with the matrix, so the more nucleation sites are precipitated by quenching, resulting in the increment of quench sensitivity.

Key words:  metallic materials      Al-Zn-Mg-Cu alloy      recrystallization fraction      Al3Zr particles      quench sensitivity      equilibrium phase     
Received:  30 May 2018     
Fund: Supported by National Key Research and Development Plan of China (No. 2016YFB0300900), National Natural Science Foundation of China (No. 51474240) and Zhongshan City Science and Technology Bureau Major Special Project (No. 2016A1001)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2018.358     OR     https://www.cjmr.org/EN/Y2018/V32/I12/881

Fig.1  OM images of Al-Zn-Mg-Cu alloy with different final-heat compression temperatures after solid solution treatment (a) 300℃; (b) 340℃; (c) 370℃; (d) 400℃; (e) 430℃
Fig.2  Effect of heat-compression temperature on size and area fraction of recrystallization grain (a) curve of final heat compression temperature versus recrystallized grain size; (b) curve of final heat compression temperature versus area fraction of recrystallization
Fig.3  Effect of recrystallization fraction on quench sensitivity of Al-Zn-Mg-Cu alloy
Fig.4  TEM and HRTEM images of Al3Zr particles (a) TEM image; (b) <100>SAEDP; (c, d) HRTEM images of Al3Zr particles in subgrain; (e, f) HRTEM images of Al3Zr particles in recrystallized grains
Fig.5  TEM images of air-cooled alloy with different recrystallization fractions (a, b) 10%; (c, d) 30%; (e, f) 58%
Fig.6  The relationship between the recrystallization fraction and the size of the quenched η phase (a);curve of recrystallization fraction and area fraction of quenched η phase (b)
Fig.7  Effect of recrystallization on the interfacial relationship between Al3Zr particles and matrix
[1] Liu W J.The research about the quench induced precipitation and quenching sensitivity of Al-Zn-Mg-Cu alloys [D]. Changsha: Central South University, 2011(刘文军. Al-Zn-Mg-Cu铝合金淬火析出行为及淬火敏感性研究 [D]. 长沙: 中南大学, 2011)
[2] Liu S D, Li C B, Han S Q, et al.Effect of natural aging on quench-induced inhomogeneity of microstructure and hardness in high strength 7055 aluminum alloy[J]. J. Alloys Compd., 2015, 625: 34
[3] Liu S D, Li C B, Ouyang H, et al.Quench sensitivity of ultra-high strength 7000 series aluminum alloys[J]. Chin. J. Nonferrous Met., 2013, 23: 927(刘胜胆, 李承波, 欧阳惠等. 超高强7000系铝合金的淬火敏感性[J]. 中国有色金属学报, 2013, 23: 927)
[4] Kikuchi S, Yamazaki H, Otsuka T.Peripheral-recrystallized structures formed in Al-Zn-Mg-Cu-Zr alloy materials during extrusion and their quenching sensitivity[J]. J. Mater. Process. Technol., 1993, 38: 689
[5] Zhang X M, Liu W J, Liu S D, et al.Effect of rolling reduction on quench sensitivity of 7050 aluminum alloy[J]. Trans. Mater. Heat Treatment, 2010, 31(6): 33(张新明, 刘文军, 刘胜胆等. 热轧变形量对7050铝合金淬火敏感性的影响[J]. 材料热处理学报, 2010, 31(6): 33)
[6] Zhang X M, Liu W J, Li H P, et al.Effect of rolling deformation rate on quench sensitivity of 7050 aluminum alloy plate[J]. Chin. J. Nonferrous Met., 2011, 21: 2060(张新明, 刘文军, 李红萍等. 轧制变形速率对7050铝合金板材淬火敏感性的影响[J]. 中国有色金属学报, 2011, 21: 2060)
[7] Zhang X M, Zhang C, Liu S D, et al.Effect of rolling reduction on quench sensitivity of aluminium alloy 7A55[J]. J. Cent. South Univ.(Sci. Technol.), 2007, 38: 589(张新明, 张翀, 刘胜胆等. 轧制变形量对7A55铝合金淬火敏感性的影响[J]. 中南大学学报(自然科学版), 2007, 38: 589)
[8] Li C B, Wang S L, Zhang D Z, et al.Effect of Zener-Hollomon parameter on quench sensitivity of 7085 aluminum alloy[J]. J. Alloys Compd., 2016, 688: 456
[9] Chen S Y, Chen K H, Peng G S, et al.Effect of hot deformation temperature and quench rate on microstructure and property of 7085 aluminum alloy[J]. Chin. J. Nonferrous Met., 2012, 22: 1033(陈送义, 陈康华, 彭国胜等. 热变形温度和淬火速率对7085铝合金组织和性能的影响[J]. 中国有色金属学报, 2012, 22: 1033)
[10] Zhang Y.Quench sensitivity of 7xxx series aluminium alloys [D]. Melbourne: Monash University, 2014
[11] Mackenzie D S.Quench rate and ageing effects in aluminum AlZnMgCu alloy [D]. Missouri: University of Missouri-Rolla, 2002
[12] Zhang X M, Liu W J, Liu S D, et al. Effect of processing parameters on quench sensitivity of an AA7050 sheet [J]. Mater. Sci. Eng., 2011, 528 A : 795
[13] Li C B, Zhang X M, Liu S D, et al.Quench sensitivity relative to exfoliation corrosion of 7085 aluminum alloy[J]. Chin. J. Mater. Res., 2013, 27: 454(李承波, 张新明, 刘胜胆等. 7085铝合金剥落腐蚀的淬火敏感性[J]. 材料研究学报, 2013, 27: 454)
[14] Li P Y, Xiong B Q, Zhang Y A, et al.Quench sensitivity and microstructure character of high strength AA7050[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 268
[15] Liu S D, Zhang Y, Liu W J, et al.Effect of step-quenching on microstructure of aluminum alloy 7055[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1
[16] Zhang Z H, Xiong B Q, Liu S F, et al.Changes of microstructure of different quench sensitivity 7, 000 aluminum alloy after end quenching[J]. Rare Met., 2014, 33: 270
[17] Deng Y L, Wan L, Zhang Y Y, et al.Influence of Mg content on quench sensitivity of Al-Zn-Mg-Cu aluminum alloys[J]. J. Alloys Compd., 2011, 509: 4636
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!