Please wait a minute...
Chinese Journal of Materials Research  2018, Vol. 32 Issue (10): 791-800    DOI: 10.11901/1005.3093.2017.746
ARTICLES Current Issue | Archive | Adv Search |
Synthesis and Characterization of Core/Shell Structured Silica Composite Microspheres with Dendritic Mesoporous Silica Shells
Changzhi ZUO1, Yang CHEN1(), Ailian CHEN2
1 School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
2 School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
Cite this article: 

Changzhi ZUO, Yang CHEN, Ailian CHEN. Synthesis and Characterization of Core/Shell Structured Silica Composite Microspheres with Dendritic Mesoporous Silica Shells. Chinese Journal of Materials Research, 2018, 32(10): 791-800.

Download:  HTML  PDF(6522KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Core/shell structured composite microspheres of sSiO2/D-mSiO2 composed of solid silica (sSiO2) as core and dendritic mesoporous silica (D-mSiO2) as shell were synthesized via an oil-water biphase stratification approach with cetyltrimethylammonium bromide (CTAB) as template, tetraethylorthosilicate (TEOS) as precursor, Triethanolamine (TEA) as catalyst and n-hexane as emulsion agent. The synthesized products were characterized by means of field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), and nitrogen adsorption/desorption measurements. As revealed by FESEM and TEM that there existed plenty of radiate-dendritic-like open meso-channels, which were perpendicular to the sSiO2 sphere surface.The thicknesses of D-mSiO2 shell could be controlled by adjusting the TEOS amount. Low-angle XRD analyses suggested that the mesochannles in the shells exhibit poor degree of order, and the average pore diameter was 7~9 nm. Moreover, the D-mSiO2 shell thicknesses (5~60 nm) increased firstly and then decreased with the increase of stirring rate (50~500 r/min). Finally, the formation mechanism for the mesoporous shells with radiate-dendritic-like open meso-channels of composite microspheres was also discussed.

Key words:  inorganic non-metallic materials      mesoporous silica      dendritic mesoporous channels      core/shell structure      composite microspheres     
Received:  18 December 2017     
ZTFLH:  TB332  
Fund: Supported by National Natural Science Foundation of China (Nos. 51405038, 51575058 & 51875052)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.746     OR     https://www.cjmr.org/EN/Y2018/V32/I10/791

Fig.1  FTIR spectra of sSiO2/D-mSiO2 composite samples
Fig.2  FESEM images of (a, b) sSiO2, (c, d) sSiO2/D-mSiO2-1, (e, f) sSiO2/D-mSiO2-2, and (g, h) sSiO2/D-mSiO2-3 samples
Fig.3  TEM images of sSiO2 (a) ,sSiO2/D-mSiO2-1 (b), sSiO2/D-mSiO2-2 (c) and sSiO2/D-mSiO2-3 (d) samples
Fig.4  TEM images of sSiO2/D-mSiO2 composites: (a) 50, (b) 100, (c) 300, and (d) 500 r/min
Fig.5  XRD patterns of sSiO2/D-mSiO2 composite samples
Fig.6  Nitrogen adsorption/desorption isotherms and pore size distribution curves of (a, b) sSiO2/D-mSiO2-1, (c, d) sSiO2/D-mSiO2-2, and (e, f) sSiO2/D-mSiO2-3 samples
Samples Shell thickness
/ (nm)a
Surface area
/ (m2g-1)b
Average pore size / (nm)c Pore Volume
/ (cm3g-1)d
Adsorption Desorption
sSiO2/D-mSiO2-1 37 ± 4 187.4 7.7 5.7 0.34
sSiO2/D-mSiO2-2 78 ± 3 241.4 7.4 5.0 0.42
sSiO2/D-mSiO2-3 114 ± 9 408.3 8.6 6.2 0.90
Table 1  Pore structure parameters of sSiO2/D-mSiO2 samples
Fig.7  Schematic diagrams of fabrication procedure for the sSiO2/D-mSiO2 composites
[1] Tan L F, Chen D, Liu H Y, et al.A silica nanorattle with a mesoporous shell: an ideal nanoreactor for the preparation of tunable gold cores[J]. Adv. Mater., 2010, 22(43): 4885
[2] Yokoi T, Kubota Y, Tatsumi T, et al.Amino-functionalized mesoporous silica as base catalyst and adsorbent[J]. Appl. Catal. A-Gen., 2012, 421: 14
[3] Yang B, Edier K, Guo C, et al.Assembly of nonionic-anionic co-surfactants to template mesoporous silica vesicles with hierarchical structures[J]. Micropor. Mesopor. Mat., 2010, 131(1-3): 21
[4] Chen Y, Li Z, Qin J, et al.Monodispersed mesoporous silica (mSiO2) spheres as abrasives for improved chemical mechanical planarization performance[J]. J. Mater. Sci., 2016, 51(12): 5811
[5] Jung S B, Ha T J, Park H H.Investigate of the properties of organically modified ordered mesoporous films[J]. J. Colloid. Interf. Sci., 2008, 320: 527
[6] Jung K T, Chu Y H, Haam S, et al.Synthesis of mesoporous silica fiber using spinning method[J]. J. Non-Cryst. Solids, 2002, 298(2-3): 193
[7] Jana S, Dutta B, Honda H, et al.Mesoporous silica MCM-41 with rod-shaped morphology: Synthesis and characterization[J]. Appl. Clay Sci., 2011, 54(2): 138
[8] Luo L, Liang Y, Erichsen E S, et al.Monodisperse mesoporous silica nanoparticles of distinct topology[J]. J. Colloid. Interf. Sci., 2017, 495: 84
[9] Zhang X, Zhu W, Cai Q, et al.A size-controllable preparation of monodisperse mesoporous SiO2 microspheres[J]. J. Funct. Mater., 2011, 42: 803(张雪龄, 朱维耀, 蔡强等. 单分散介孔氧化硅微球的粒径可控制备[J]. 功能材料,2011,42: 803)
[10] Wang M, Sun Z, Yue Q, et al.An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres[J]. J. Am. Chem. Soc., 2014, 136: 1884
[11] Park D S, Yun D, Choi Y, et al.Effect of 3D open-pores on the dehydration of n-butanol to di-n-butyl ether (DNBE) over a supported heteropolyacid catalyst[J]. Chem. Eng. J., 2013, 228: 889
[12] Shen D, Yang J, Li X, et al.Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres[J]. Nano Lett., 2014, 14: 923
[13] Suzuki K, Ikari K, Imai H.Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system[J]. J. Am. Chem. Soc., 2004, 126(2): 462
[14] Fang X, Chen C, Liu Z, et al.A cationic surfactant assisted selective etching strategy to hollow mesoporous silica sphere[J]. Nanoscale, 2011, 3: 1632
[15] Mizutani M, Yamada Y, Nakamura T, et al.Anomalous pore expansion of highly monodispersed mesoporous silica spheres and its application to the synthesis of porous ferromagnetic composite[J]. Chem. Mater., 2008, 20(14): 4777
[16] Du X, He J.Amino-functionalized silica nanoparticles with center-radially hierarchical mesopores as ideal catalyst carriers[J]. Nanoscale, 2012, 4: 852
[17] Sun Z, Cui G, Li H, et al.Multifunctional dendritic mesoporous silica nanospheres loaded with silver nanoparticles as a highly active and recyclable heterogeneous catalyst[J]. Colloid Sur. A-Physicochem. Eng. Asp., 2016, 489: 142
[18] Xue X, Lang W, Yan X, et al.Dispersed vanadium in three-dimensional dendritic mesoporous silica nanospheres: active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2[J]. ACS Appl. Mater. Interfaces, 2017, 9: 15408
[19] Yang J, Chen W, Shen D, et al.Controllable fabrication of dendritic mesoporous silica-carbon nanospheres for anthracene removal[J]. J. Mater. Chem. A, 2014, 2: 11045
[20] Zhang H, Li Z, Xu P, et al.A facile two step synthesis of novel chrysanthemum-like mesoporous silica nanoparticles for controlled pyrene release[J]. Chem. Commun., 2010, 46(36): 6783
[21] Xie Y, Wang J, Wang M, et al.Fabrication of fibrous amidoxime-functionalized mesoporous silica microsphere and its selectively adsorption property for Pb2+ in aqueous solution[J]. J. Hazard. Mater., 2015, 297: 66
[22] Du X, Zhao C, Huang H, et al.Synthesis of dendrimer-like porous silica nanoparticle and their applications in advanced carrier[J]. Prog. Chem., 2016, 28(8): 1131(杜鑫, 赵彩霞, 黄洪伟等. 树枝状多孔氧化硅纳米粒子的制备及其在先进载体中的应用[J]. 化新进展,2016,28(8): 1131)
[23] Ming W, Wu D, Benthem R, et al.Superhydrophobic films from raspberry-like particles[J]. Nano Lett., 2005, 5(11): 2298
[24] Karandikar P R, Lee Y J, Kwak G, et al.Co3O4@mesoporous silica for fischer-tropsch synthesis: Core-shell catalysts with multiple core assembly and different pore diameters of shell[J]. J. Phys. Chem. C, 2014, 118: 21975
[25] Sekhar A C S, Meera C J, Ziyad K V, et al. Synthesis and catalytic activity of monodisperse gold-mesoporous silica core-shell nanocatalysts[J]. Catal. Sci. Technol., 2013, 3: 1190
[26] Chen Y, Chen A, Qin J.Polystyrene core-silica shell composite particles: effects of mesoporous shell structures on oxide CMP and mechanical stability[J]. RSC. Adv., 2017, 7: 6548
[27] Chen Y, Wang Y, Qin J.Preparation of allotropic composite abrasives SSiO2/MSiO2 with core/shell structure[J]. Chin. J. Mater. Res., 2015, 29(8): 634(陈杨, 汪亚运, 秦佳伟. 同质异构SSiO2/MSiO2核/壳复合磨粒的合成[J]. 材料研究学报,2015,29(8): 634)
[28] Wei H, Han L, Shi L, et al.Synthesis of monodisperse silica microspheres with solid core and mesopore shell[J]. Chem. J. Chinese. U., 2011,32(3): 503(魏昊, 韩路, 石琳等. 单分散核-壳结构介孔氧化硅微球的合成 [J]. 高等学校化学学报,2011,32(3): 503)
[29] Jiang W, Wu C, Zhang R.General assembly of organic molecules in core-shell mesoporous silica nanoparticles[J]. Mater. Lett., 2012, 77: 100
[30] Ran Z, Sun Y, Chang B, et al.Silica composite nanoparticles containing fluorescent solid core and mesoporous shell with different thickness as drug carrier[J]. J. Colloid. Interf. Sci., 2013, 410: 94
[31] Qu Q, Min Y, Zhang L, et al.Silica microsphere with fibrous shells: synthesis and application in HPLC[J]. Anal. Chem., 2015, 87: 9631
[32] Qu Q, Si Y, Xuan H, et al.Synthesis of core-shell silica spheres with tunable pore diameters for HPLC[J]. Mater. Lett., 2018, 211: 40
[33] Shen X, Zhai Y, Sun Y, et al.Microwave-assisted preparation and characterization of ultrafine spherical SiO2 powder[J]. J. Northeast. Univ., 2011, 32(7): 985(申晓毅, 翟玉春, 孙毅等. 球形氧化硅微粉的微波辅助制备和表征[J]. 东北大学学报(自然科学版),2011,32(7): 985)
[34] Deshmukh P, Peshwe D, Pathak S.Determination of silica activity index and XRD, SEM and EDS studies of amorphous SiO2 extracted from rice husk ash[J]. Trans. India Inst. Metals, 2012, 65(1): 63
[35] Kruk M, Jaroniec M.Adsorption study of surface and structural properties of MCM-41 materials of different pore sizes[J]. J. Phys. Chem. B, 1997, 101(4): 583
[36] Kruk M, Jaroniec M.Characterization of the porous structure of SBA-15[J]. Chem. Mater., 2000, 12: 1961
[37] Kao K, Mou C.Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent[J]. Micropor. Mesopor. Mat., 2013, 169: 7
[38] Santos S N, Reis S R R D, Pires L P P, et al. Avoiding the mononuclear phagocyte system using human albumin for mesoporous silica nanoparticle system[J]. Micropor. Mesopor. Mat., 2017, 251: 181
[39] Burgess C G V, Everett D H. The lower closure point in adsorption hysteresis of capillary condensation type[J]. J. Colloid. Interf. Sci., 1970, 33: 611
[40] Seaton N A.Determination of the connectivity of porous solids from nitrogen sorption measurements[J]. Chem. Engng. Sci., 1991, 46: 1895
[41] Groen J C, Peffer L A A, Pérez-Ramírez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis[J]. Micropor. Mesopor. Mat., 2003, 60: 1
[42] Yoon S B, Kim J, Kim J H, et al.Synthesis of monodisperse spherical silica particles with solid core and mesoporous shell: mesopore channels perpendicular to the surface[J]. J. Mater. Chem., 2007, 17: 1758
[43] Monnier A, Schüth F, Huo Q, et al.Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures[J]. Science, 1993, 261: 1299
[44] Wang W, Wang X, Huang X.Effects of ethanolamines catalysts on synthesis of silica aerogel[J]. Chem. Ind. Eng., 2010, 27(3): 219(王文金, 王雪枫, 黄雪莉. 乙醇胺对硅气凝胶合成的催化作用[J]. 化学工业与工程,2010,27(3): 219)
[45] By K M, Johannes K, Thomas B.Colloidal suspensions of nanometer-sized mesoporous silica[J]. Adv. Funct. Mater., 2007, 17: 605
[46] Yang J, Shen D, Wei Y, et al.Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels[J]. Nano Res., 2015, 8(8): 2503
[47] Deng Y, Qi D, Deng C, et al.Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins[J]. J. Am. Chem. Soc., 2008, 130: 28
[48] Yue Q, Li J, Zhang Y, et al.An interface coassembly in biliquid phase: Toward core-shell magnetic mesoporous silica microspheres with tunable pore size[J]. J. Am. Chem. Soc., 2015, 137: 13282
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!