Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (7): 495-501    DOI: 10.11901/1005.3093.2017.313
ARTICLES Current Issue | Archive | Adv Search |
Conversion of Water-insoluble Aluminum Sources into Metal-organic Framework MIL-53(Al) and its Adsorptive Removal of Roxarsone
Shuliang HOU1, Huigong LU1, Yifan GU1, Xiaoliang MA1, Yinan WU1(), Ying WANG2(), Fengting LI1
1 College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 200092, China
2 Department of Chemistry, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, China
Cite this article: 

Shuliang HOU, Huigong LU, Yifan GU, Xiaoliang MA, Yinan WU, Ying WANG, Fengting LI. Conversion of Water-insoluble Aluminum Sources into Metal-organic Framework MIL-53(Al) and its Adsorptive Removal of Roxarsone. Chinese Journal of Materials Research, 2017, 31(7): 495-501.

Download:  HTML  PDF(2727KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The MIL-53(Al) was prepared by hydrothermal method from water-insoluble aluminum sources: alumina, aluminum hydroxide, boehmite. The products were characterized by SEM, XRD, N2 sorption and TGA, simultaneously compared with MIL-53(Al) prepared from aluminum nitrate. The results show that the water-insoluble aluminum sources can be good candidates for the synthesis of typical MIL-53(Al), BET surface areas of which are about 700-1000 m2/g. It’s also noticed that there is different framework flexibility of synthesized MIL-53(Al) from water-insoluble and soluble aluminum sources. The framework of MIL-53(Al) prepared from alumina mainly shows large-pore structure and less flexibility. The adsorption behavior of roxarsone on MIL-53(Al) was investigated. MIL-53(Al) prepared from alumina shows better adsorptive performance towards roxarsone. The adsorption of MIL-53(Al) from alumina fits well with secondary dynamic mode.

Key words:  metal-organic frameworks      MIL-53      breathing effect      roxarsone      adsorption     
Received:  20 December 2016     
ZTFLH:  TB34  
Fund: Supported by National Natural Science Foundation of China (Nos. 51203117 & 21305046) and the Fundamental Research Funds for the Central Universities (Nos. 2014KJ007 & 2015KJ001) (Tongji University)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.313     OR     https://www.cjmr.org/EN/Y2017/V31/I7/495

Fig.1  Views of the 3D structure of MIL-53(Al) (left) and its breathing effect (right)
Fig.2  XRD pattern of MIL-53(Al) prepared from different four kinds of aluminum sources
Fig.3  SEM pictures of MIL-53(Al) prepared from different four kinds of aluminum sources
Fig.4  Nitrogen adsorption-desorption isotherms of MIL-53(Al) prepared from different four kinds of aluminum sources
Sample SBET / m2g-1 SLangmuir / m2g-1 Vmicro / cm3g-1 VT / cm3g-1
MIL-53(Al)OX
MIL-53(Al)OH
MIL-53(Al)OOH
MIL-53(Al)NO
779
856
770
994
1017
995
886
1111
0.18
0.27
0.24
0.34
0.91
0.54
0.51
0.48
Table 1  Textural properties of MIL-53(Al) prepared from different four kinds of aluminum sources
Fig.5  TGA curves of MIL-53(Al) prepared from different four kinds of aluminum sources
Fig.6  Adsorptionkinetics of MIL-53(Al) materials prepared from different four kinds of aluminum sources and structural formula of ROX inserted
Alumium sources Primary dynamic model Secondary dynamic model Morries-weber model
qe k1 R2 qe k1(10-3) R2 C Kip R2
MIL-53(Al)OX 74.263 0.12 0.969 78.714 2.44 0.998 30.130 3.97 0.664
MIL-53(Al)OH 33.496 0.03 0.860 37.882 1.22 0.937 5.518 2.273 0.961
MIL-53(Al)OOH 31.660 0.03 0.804 35.484 1.35 0.875 5.284 2.146 0.948
MIL-53(Al)NO 3.518 0.09 0.881 3.853 28.8 0.936 1.021 0.225 0.834
Table 2  Parameters of ROX adsorption on MIL-53(Al) materials prepared from different four kinds of aluminum sources when fitting the adsorption data using primary dynamic model, secondary dynamic model and morries-weber model
[1] Furukawa H, Cordova K E,O’Keeffe M,et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149): 1230444.
[2] Li Xiaojuan, He Changfa, Huang Bin, et al.Progress in the applications of metal-organic frameworks in adsorptionremoval of hazardous materials[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 586(李小娟, 何长发, 黄斌, 等. 金属有机骨架材料吸附去除环境污染物的进展[J]. 化工进展, 2016, 35(2): 586)
[3] Loiseau T, Serre C, Huguenard C, et al.A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration[J]. Chemistry-A European Journal, 2004, 10(6): 1373
[4] Garbarino J R, Bednar A J, Rutherford D W, et al.Environmental fate of roxarsone in poultry litter. I. Degradation of roxarsone during composting[J]. Environmental Science & Technology, 2003, 37(8): 1509
[5] Stolz J F, Perera E, Kilonzo B, et al.Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species[J]. Environmental Science & Technology, 2007, 41(3): 818
[6] Bednar A J, Garbarino J R, Ferrer I, et al.Photodegradation of roxarsone in poultry litter leachates[J]. Science of The Total Environment, 2003, 302(1): 237
[7] Xi Gongfang.Study the migration and residue law of typical organic arsenic in the system of soil-vegetable [D].Anhui Normal University, 2014(奚功芳. 典型有机胂在土壤—蔬菜系统中的迁移残留规律研究[D]. 安徽师范大学, 2014)
[8] Hu J, Tong Z, Hu Z, et al.Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes[J]. Journal of Colloid and Interface Science, 2012, 377(1): 355
[9] Zheng S, Jiang W, Cai Y, et al.Adsorption and photocatalytic degradation of aromatic organoarsenic compounds in TiO2suspension[J]. Catalysis Today, 2014, 224: 83
[10] Wang Y J, Ji F, Wang W, et al.Removal of roxarsone from aqueous solution by Fe/La-modified montmorillonite[J]. Desalination and Water Treatment, 2015: 1
[11] Yang C X, Liu S S, Wang H F, et al.High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53 (Al) as the stationary phase[J]. Analyst, 2012, 137(1): 133
[12] Horcajada P, Serre C, Maurin G, et al.Flexible porous metal-organic frameworks for a controlled drug delivery[J]. Journal of the American Chemical Society, 2008, 130(21): 6774
[13] Zhou M, Wu Y, Qiao J, et al.The removal of bisphenol A from aqueous solutions by MIL-53 (Al) and mesostructured MIL-53 (Al)[J]. Journal of Colloid and Interface Science, 2013, 405: 157
[14] Li J, Wu Y, Li Z, et al.Characteristics of arsenate removal from water by metal-organic frameworks (MOFs)[J]. Water Science and Technology, 2014, 70(8): 1391
[15] Li C, Xiong Z, Zhang J, et al.The strengthening role of the amino group in metal-organic framework MIL-53 (Al) for methylene blue and malachite green dye adsorption[J]. Journal of Chemical & Engineering Data, 2015, 60(11): 3414
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[4] YANG Qin, WANG Zhen, FANG Chunjuan, WANG Ruodi, GAO Dahang. Preparation and Adsorption Properties of CMC/AA/CB[8]/BET Gel with Controllable Mechanical Properties[J]. 材料研究学报, 2022, 36(8): 628-634.
[5] SHEN Yanlong, LI Beigang. Preparation of Magnetic Amino Acid-Functionalized Aluminum Alginate Gel Polymer and its Super Adsorption on Azo Dyes[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] YU Moxin, KUAI Le, WANG Liang, ZHANG Chen, WANG Xiaoting, CHEN Qihou. Synthesis of N-Doped Hierarchical Porous Carbon and its Adsorption Capacity for Acid Orange 74[J]. 材料研究学报, 2021, 35(9): 667-674.
[7] QUE Aizhen, ZHU Taoyu, ZHENG Yuying. Preparation of Hollow Magnetic Graphene Oxide and Its Adsorption Performance for Methylene Blue[J]. 材料研究学报, 2021, 35(7): 517-525.
[8] ZHANG Hao, LI Fan, CHANG Na, WANG Haitao, CHENG Bowen, WANG Panlei. Preparation of Carboxylic Acid Grafted Starch Adsorption Resin and Its Dye Removal Performance[J]. 材料研究学报, 2021, 35(6): 419-432.
[9] ZHANG Xiangyang, ZHANG Qiyang, ZHENG Tao, TANG Tao, LIU Hao, LIU Guojin, ZHU Hailin, ZHU Haifeng. Fabrication of Composite Material Based on MOFs and its Adsorption Properties for Methylene Blue Dyes[J]. 材料研究学报, 2021, 35(11): 866-872.
[10] ZHANG Chen, HAN Weihao, GONG Yumei, YU Yang, CAO Jincheng. Synthesis of Hollow Mesoporous SiO2 and Its Adsorption Performance of Cr[J]. 材料研究学报, 2021, 35(1): 45-52.
[11] SUN Yue, LI Dawei, WEI Qufu. Adsorption Properties of Metal-organic Framework Material MIL-53(Al)-F127 for Bisphenol A[J]. 材料研究学报, 2020, 34(5): 353-360.
[12] LIU Shanshan, LAN Yanhua, YANG Rongjie, ZHOU Zhiming. Simulation Calculation for Adsorption Mechanism of Tris (chloroisopropyl) Phosphate on Surface of Montmorillonite[J]. 材料研究学报, 2020, 34(11): 853-860.
[13] Xiuli HU,Xiaxi YAO,Wenjun ZHANG,Wangjin JI,Jiacheng MU,Yuwen YONG,Xuhong WANG. Preparation of Porous Carbon Fibers with Different Carbon Sources and Their Adsorption Properties[J]. 材料研究学报, 2019, 33(5): 379-386.
[14] Yunhua LU,Guoyong XIAO,Lin LI,Yan DONG,Haijun CHI,Zhizhi HU,Tonghua WANG. Thermal Rearrangement of Acetate-functionalized Polyimides and Adsorption Properties for CO2[J]. 材料研究学报, 2019, 33(3): 209-217.
[15] Kunquan LI, Boyu LI. Effect of Modification with Nitrogen Functional Groups on Structure and Adsorption Performence of Biomass Active Carbon[J]. 材料研究学报, 2018, 32(12): 929-935.
No Suggested Reading articles found!