Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (6): 451-457    DOI: 10.11901/1005.3093.2015.608
Orginal Article Current Issue | Archive | Adv Search |
The Influences of Co-precipitation Time on the Preparation of BiFeO3 Powders and Properties of BiFeO3 Ceramics
Zhenyu CHENG,Jianqing DAI(),Haofei LIU,Zhixiang WANG,Ya LI,Ruihao ZHANG
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Cite this article: 

Zhenyu CHENG,Jianqing DAI,Haofei LIU,Zhixiang WANG,Ya LI,Ruihao ZHANG. The Influences of Co-precipitation Time on the Preparation of BiFeO3 Powders and Properties of BiFeO3 Ceramics. Chinese Journal of Materials Research, 2017, 31(6): 451-457.

Download:  HTML  PDF(3288KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The mol ratio between Bi element and Fe element was determined to be 1.03:1. The influences of co-precipitation time on the preparation of its precursor powders and properties of single-phase BiFeO3 ceramics were researched when other conditions were fixed. The results indicated that: the pure single-phase BiFeO3 powders was obtained at the reaction time of 95 h and the particle size was uniform. The high density BiFeO3 (the relative density 98.3%) ceramics samples were prepared by spark plasma sintering (SPS) and then their dielectric properties and ferroelectric properties were measured. And the result showed that it also had the maximum dielectric constant 106.5 and the minimum dielectric loss 0.006 at the frequency of 30 MHz. The saturated electric hysteresis loop was detected at room temperature too, the saturated polarization is 0.4 μC/cm2.

Key words:  inorganic non-metallic materials      co-precipitation      reaction time      BiFeO3      spark plasma sintering     
Received:  17 March 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51162019 & 51462019)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2015.608     OR     https://www.cjmr.org/EN/Y2017/V31/I6/451

Fig.1  (a) the variation trend of the average particle size (D50) with time; (b) the variation trend of the particle distribution width (SPAN) with time
Fig.2  The XRD patterns of BiFeO3 powder of different co-precipitation reaction time
Fig.3  The SEM images of BiFeO3 powder of different co-precipitation reaction time (a) 10 h; (b) 45 h; (c) 95 h; (d) x150 h
Fig.4  The density of BiFeO3 ceramics (a) and the XRD patterns of BiFeO3 ceramics (b) of different co-precipitation reaction time
Fig.5  The SEM images of BiFeO3 ceramics of different co-precipitation reaction time (a) 45 h; (b) 95 h; (c) 150 h
Fig.6  The dielectric constants (a) and the dielectric loss (b) of BiFeO3 ceramics of different co-precipitation reaction time
t/h ε' (30 MHz) tanδ (30 MHz)
45 67.7 0.029
95 106.5 0.006
150 66.3 0.038
Table 1  The dielectric constants and the dielectric loss at the frequency of 30 MHz of BiFeO3 ceramics of different co-precipitation reaction time
t/h Ps /μCcm-2 Pr /μCcm-2 Voltage/V
45 0.20 0.08 760
95 0.40 0.14 2690
150 0.33 0.14 2824
Table 2  The ferroelectric parameters of BiFeO3 ceramics of different co-precipitation reaction time
Fig.7  The ferroelectric hysteresis loops of BiFeO3 ceramics of different co-precipitation reaction time
[1] Zhang J X, Yu P.Magnetics, Electrics and magnetoelectric coupling properties of multiferroic BiFeO3[J]. B. Chin. Ceram. Soc., 2013, 41(7): 905
[1] (张金星, 于浦. 多铁性材料BiFeO3的磁学、电学性质及磁电耦合效应[J]. 硅酸盐学报, 2013, 41(7): 905)
[2] Huang F Z, Wang Z J, Lu X M, et al.Peculiar magnetism of BiFeO3 nanoparticles with size approaching the period of the spiral spin structure[J]. Sci. Rep., 2013, (3): 2097
[3] Ding H C, Duan C G.Electric-field control of magnetic ordering in the tetragonallike BiFeO3[J]. Europhys. Lett., 2012, 97(5): 57007
[4] Bea H, Bibes M, Cherifi S, et al.Tunnel Magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films[J]. Appl. Phys. Lett., 2006, 89(24): 242114
[5] Bea H, Gajek M, Bibe M, et al.Spintronics with multiferroics[J]. J. Phys.: Condens. Matter., 2008, 20(43): 434221
[6] Zhang J X, He Q, Trassin M, et al.Microscopic origin of the giant ferroelectric polarization in tetragonallike BiFeO3[J]. Phys. Rev. Lett., 2011, 107(14): 147602
[7] Smolenskii G A, Agranovska Y A, Isupov V A.New ferroelectrics of complex composition: Pb2MgWO6, Pb3Fe2WO9 and Pb2FeTaO6[J]. Soviet Physics-Solid State, 1958, 3: 1981
[8] Ke H, Wang W, Wang Y, et al.Factors controlling pure phase multiferroic BiFeO3 powders synthesized by chemical co-precipitation[J]. J. Alloys Compd., 2011, 509(5): 2192
[9] Awan M, Bhatti A, Mater J.Synthesis and multiferroic properties of BiFeO3 ceramics by melt-Phase sintering[J]. J. Mater. Eng. Perform., 2011, 20(2): 283
[10] Puli V S, Kumar A, Panwar N, et al.Transition metal modified bulk BiFeO3 with improved magne tization and linear magnetoelectric coupling[J]. J. Alloys Compd., 2011, 509(32): 8223
[11] Zhang X, Bourgeois L, Yao J, et al.Tuning the morphology of bismuth ferrite nano-powders and microcrystals: from sheets to fibers[J]. Small, 2007, 3(9): 1523
[12] Yasin Shami M, Awan M S, Anis-Ur-Rehman M. Phase pure synthesis of BiFeO3 nano-powders using diverse precursor via co-precipitation method[J]. J. Alloys Compd., 2011, 509: 10139
[13] Shokrollahi H.Magnetic, Electrical and structural characteriza tion of BiFeO3 nano-particles synthesized by co-precipitation[J]. Powder Technol., 2013, 235: 953
[14] Muneeswaran M, Jegatheesan P, Gopiraman M, et al.Structural, optical and multiferroic properties of single-phased BiFeO3[J]. Appl Phys A-Mater., 2014, 114(3): 853
[15] Mazumder R, Chakravarty D, Bhattacharya D.Spark plasma sintering of BiFeO3[J]. Mater. Res. Bull., 2009, 44(3): 555
[16] Dai Z H, Akishige Y.BiFeO3 ceramics synthesized by spark plasma sintering[J]. Ceram. Int., 2012, 38: 403
[17] Yu Z W, Miao H Y, Tan G Q.Research of Bi25FeO40 na-no-powders synthesized by hydrothermal method[J]. Mater. Sci. Technol., 2009, 17(6): 757
[17] (于志伟, 苗鸿雁, 谈国强. 水热法合成Bi25FeO40纳米粉体的研究[J]. 材料科学与工艺, 2009, 17(6): 757)
[18] Kumar M, Yadav K L, Varma G D.Large magnetization and weak polarization in sol-gel derived BiFeO3 ceramics[J]. Mater. Lett., 2008, 62(8/9): 1159
[19] Shami M Y, Awan M S, Rehman M.The effect of heat treatment on structural and multiferroic properties of phase-pure BiFeO3[J]. J. Electron. Mater., 2012, 41(8): 2216
[20] Zhang H F, Yao X L, Zhang Y.Microstructure and dielectric properties of barium strontium titanate thick films and ce-ramics with a concretelike structure[J]. J. Am. Ceram. Soc., 2006, 90: 2333
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
No Suggested Reading articles found!