Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (6): 429-436    DOI: 10.11901/1005.3093.2016.625
Orginal Article Current Issue | Archive | Adv Search |
Influence of Silica-core Structure on Polishing Characteristics of Core/shell Structured Composite Particles of SiO2/CeO2
Ailian CHEN1,Zefeng LI2,Yang CHEN2()
1 School of Mechanical Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
2 School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, China
Cite this article: 

Ailian CHEN,Zefeng LI,Yang CHEN. Influence of Silica-core Structure on Polishing Characteristics of Core/shell Structured Composite Particles of SiO2/CeO2. Chinese Journal of Materials Research, 2017, 31(6): 429-436.

Download:  HTML  PDF(4478KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composite particles of mSiO2/CeO2(330-340 nm in size) were prepared by applying CeO2 nanoparticles coating (15-20 nm in thickness) on core material of mesoporous silica (mSiO2, ca. 300 nm in size) with radial mesochannels (ca. 2.6 nm in pore size). The prepared composite particles were characterized by transmission electron microscopy, field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and nitrogen adsorption-desorption analysis. The results show that the oxidized silicon wafer substrates was polished comparatively with when taking mSiO2/CeO2 composite particles or sSiO2/CeO2 composite particles(solid silica core) as polishing paste, the polished pre-oxidized silicon wafer presented had a lower root-mean-square roughness(RMS=0.267 nm) and a higher material removal rate(MRR=45 nm/min) for the former paste, in the contrast, than those of the sSiO2/CeO2 composite particles with solid silica cores(RMS=0.309 nm and MRR=24 nm/min for the later one. Furthermore, the mSiO2/CeO2 composite particles may be beneficial were attributed to the elimination of mechanical damages (such as scratches) on the wafer surface. The very structure of silica core of mSiO2/CeO2 composite particles presented obvious effects for their polishing characteristics.

Key words:  inorganic non-metallic material      silica      ceria      core-shell structure      composite particle      polishing     
Received:  25 October 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51205032, 51405038 & 51575058)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.625     OR     https://www.cjmr.org/EN/Y2017/V31/I6/429

Carrier pressure/psi Head speed/(rmin-1) Slurry flow rate /mLmin-1 Polishing time/min Platen speed/(rmin-1) Polishing pad model
3.3 120 100 1 90 MD Chem (Struers)
Table 1  Parameters of polishing process
Fig.1  FTIR spectra of the mSiO2 samples before and after calcination
Fig.2  TEM imags of mSiO2 samples
Fig.3  Nitrogen adsorption-desorption isotherms (a) and pore-size distribution curve (inset) and low-angle XRD pattern of mSiO2 samples
Fig.4  XRD patterns of the obtained samples
Fig.5  TEM images of (a) mSiO2/CeO2 and (b) sSiO2/CeO2 composite particles
Fig.6  FESEM images of composite particles: (a) mSiO2, (b) mSiO2/CeO2, (c) sSiO2, (d) sSiO2/CeO2
Fig.7  XPS wide spectrum of mSiO2/CeO2 composite particles
Fig.8  AFM topographies and profilograms of the substrate surfaces after polishing with (a) sSiO2/CeO2 and (b) mSiO2/CeO2 composite particles
[1] Jano? P, Ederer J, Pila?ová V, et al. Chemical mechanical glass polishing with cerium oxide: Effect of selected physico-chemical characteristics on polishing efficiency [J]. Wear, 2016, 362-363: 114
[2] Zhang Z F, Yu L, Liu W L, et al.Surface modification of ceria nanoparticles and their chemical mechanical polishing behavior on glass substrate[J]. Appl. Surf. Sci., 2010, 256(12): 3856
[3] Praveen B V S, Cho B J, Park J G, et al. Effect of lanthanum doping in ceria abrasives on chemical mechanical polishing selectivity for shallow trench isolation[J]. Mat. Sci. Semicon. Proc., 2015, 33: 161
[4] Song X, Jiang N, Li Y, et al.Synthesis of CeO2-coated SiO2 nanoparticle and dispersion stability of its suspension[J]. Mater. Chem. Phys., 2008, 110(1): 128
[5] Chen Y, Long R W, Chen Z G.Synthesis and application of CeO2-coated SiO2 composite abrasives[J]. Chin. J. Nonferrous Met., 2010, 20(1): 163
[5] (陈杨, 隆仁伟, 陈志刚. 包覆结构CeO2/SiO2复合磨料的合成及其应用[J]. 中国有色金属学报, 2010, 20(1): 163)
[6] Zhang Z F, Liu W L, Zhu J K, et al.Synthesis, characterization of ceria-coated silica particles and their chemical mechanical polishing performance on glass substrate[J]. Appl. Surf. Sci., 2010, 257(5): 1750
[7] Peedikakkandy L, Kalita L, Kavle P, et al.Preparation of spherical ceria coated silica nanoparticle abrasives for CMP application[J]. Appl. Surf. Sci., 2015, 357: 1306
[8] Chen Y, Lu J X, Chen Z G.Preparation, characterization and oxide CMP performance of composite polystyrene-core ceria-shell abrasives[J]. Microelectron. Eng., 2011, 88(2): 200
[9] Chen Y, Li Z N, Miao N M.Polymethylmethacrylate(PMMA)/CeO2 hybrid particles for enhanced chemical mechanical polishing performance[J]. Tribol. Int., 2015, 82: 211
[10] Chen Y, Li Z N, Miao N M.Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization[J]. Appl. Surf. Sci., 2014, 314: 180
[11] Williford R E, Li X S, Addleman R S, et al.Mechanical stability of templated mesoporous silica thin films[J]. Micropor. Mesopor. Mat., 2005, 85(3): 260
[12] Guo D, Li J, Xie G, et al.Elastic properties of polystyrene nanospheres evaluated with atomic force microscopy: Size effect and error analysis[J]. Langmuir, 2014, 30(24): 7206
[13] Guo X Z, Shan J Q, Ding L, et al.Preparation and characterization of hierarchically porous silica monoliths[J]. Chinese J. Inorg. Chem., 2015, 31(4): 635
[13] (郭兴忠, 单加琪, 丁力等. 阶层多孔二氧化硅块体材料的制备与表征[J]. 无机化学学报, 2015, 31(4): 635)
[14] Blas H, Save M, Pasetto P, et al.Elaboration of monodisperse spherical hollow particles with ordered mesoporous silica shells via dual latex/surfactant templating: Radial orientation of mesopore channels[J]. Langmuir, 2008, 24(22): 13132
[15] Yang J, Shen D, Zhou L, et al.Spatially confined fabrication of core-shell gold nanocages@mesoporous silica for near-infrared controlled photothermal drug release[J]. Chem. Mater., 2013, 25(15): 3030
[16] Zhang K, Xu L L, Jiang J G, et al.Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure[J]. J. Am. Chem. Soc., 2013, 135(7): 2427
[17] Kong G, Zhang S H, Sun Z W, et al.Effect of size of silica powder on preparation of silicate conversion coatings on galvanized steel[J]. Chin. J. Mater. Res., 2014, 28(6): 462
[17] (孔纲, 张双红, 孙子文等. 二氧化硅粉体粒度对硅酸盐转化膜制备的影响[J]. 材料研究学报, 2014, 28(6): 462)
[18] Chen F, Chen Z G, Qian J C, et al.Hierarchical porous ceria synthesized by maple leaf templates and its catalytic performance[J]. J. Inorg. Mater., 2012, 27(1): 69
[18] (陈丰, 陈志刚, 钱君超等. 以枫叶为模板合成分级多孔氧化铈材料及其催化性能[J]. 无机材料学报, 2012, 27(1): 69)
[19] Zhang J, Jiang X L, Yu L, et al.Ceria hollow nanospheres synthesized by hydrothermal method and their adsorption capacity[J]. Chin. J. Mater. Res., 2016, 30(5): 365
[19] (张姣, 江学良, 余露等. 水热法制备二氧化铈纳米空心球及其吸附性能研究[J]. 材料研究学报, 2016, 30(5): 365)
[20] Cook L M.Chemical processes in glass polishing[J]. J. Non-Cryst. Solids, 1990, 120(1-3): 152
[21] Chen Y, Qian C, Miao N M.Atomic force microscopy indentation to determine mechanical property for polystyrene-silica core-shell hybrid particles with controlled shell thickness[J]. Thin Solid Films, 2015, 579: 57
[22] Romeis S, Paul J, Herre P, et al.In situ deformation and breakage of silica particles inside a SEM[J]. Procedia Engineering, 2015, 102: 201
[23] Li W, Li F Y, Shi Z S, et al.Preparation and characterization of strong-lightweight porous silica spheres in millimeter scale[J]. Chem. J. Chinese Universities, 2015, 36(9): 1655
[23] (李娃,李凤云,史志胜等. 毫米级轻质高强度多孔二氧化硅球的制备与表征[J]. 高等学校化学学报, 2015, 36(9): 1655)
[24] Chen X, Zhao Y, Wang Y.Modeling the effects of particle deformation in chemical mechanical polishing[J]. Appl. Surf. Sci., 2012, 258(22): 8469
[25] Xu J, Luo J B.An investigation on the monocrystalline silicon surface damage caused by slurry erosion[J]. Tribology, 2006, 26(1): 7
[25] (徐进,雒建斌. 含纳米粒子溶液对单晶硅表面的冲蚀磨损损伤实验研究[J]. 摩擦学学报, 2006, 26(1): 7)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] MENG Xiangdong, ZHEN Chao, LIU Gang, CHENG Huiming. Controlled Synthesis of CuO Nanoarrays as Efficient Photocathodes for Photoelectrochemical (PEC) for Water Splitting[J]. 材料研究学报, 2022, 36(4): 241-249.
No Suggested Reading articles found!