Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 219-225    DOI: 10.11901/1005.3093.2016.318
ARTICLES Current Issue | Archive | Adv Search |
Effect of Two Maleic Anhydride Grafted Polymers as Modifier on Intumescent Flame Retardancy and Mechanical Property of Polypropylene Based Composites
Jing JIN1(),Hao WANG2,Zhongjun SHU1,Lingang LU3
1 Department of Fire Protection Engineering, Chinese People's Armed Police Forces Academy, Langfang 065000, China
2 Graduates College, Chinese People's Armed Police Forces Academy, Langfang 065000, China
3 Department of Science and Technology, Chinese People's Armed Police Forces Academy, Langfang 065000, China
Cite this article: 

Jing JIN,Hao WANG,Zhongjun SHU,Lingang LU. Effect of Two Maleic Anhydride Grafted Polymers as Modifier on Intumescent Flame Retardancy and Mechanical Property of Polypropylene Based Composites. Chinese Journal of Materials Research, 2017, 31(3): 219-225.

Download:  HTML  PDF(1041KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

To improve the flame retardancy and mechanical properties of iso-polypropylene (iPP), composites of iPP/poly(ethylene-co-octene)/intumescent flame retardant (iPP/POE/IFR),were prepared by melt-extrusion process with a twin-screw extruder. And then their flame retardancy and mechanical properties were investigated systematically. Particularly, the effect of two typical compatibilizers, i.e. maleic anhydride grafted polymers of POE-g-MAH and PP-g-MAH, on the properties of the composites was examined in detail. The results show that IFR is efficient for improving the flame retardancy of the iPP blend, while harmful to their mechanical properties. By comparing with the composite without compatibilizer, the addition of 1%(mass fraction) compatibilizer can improve significantly the flame retardency and mechanical properties for the composites. Furthermore, pp-g-MAH is more effective in improving the flame retardency, while POE-g-MAH is preferable to enhance the mechanical properties. The optimized comprehensive properties are resulted from the fine dispersion of the intumescent flame retardant.

Key words:  composite      flame retardant and mechanical properties      blending and composites      compatibilizer     
Received:  07 June 2016     
Fund: Supported by National Natural Science Foundation of China (No.21472241), Beijing National Laboratory for Molecular Sciences (No.2013015) and Natural Science Foundation of Hebei Province (No.B2015507044)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.318     OR     https://www.cjmr.org/EN/Y2017/V31/I3/219

Sample Mass fraction/% LOI
/%
Tensile strength
/MPa
Impact strength
/kJm-2
iPP POE IFR POE-g-MAH PP-g-MAH
iPP 100 0 0 0 0 17.8 39.1 2.0
iPP/POE 80 20 0 0 0 20.0 34.8 18.5
IFR-0 80 20 20 0 0 27.0 24.5 4.6
IFR-c1 80 19 20 1 0 28.8 27.5 6.6
IFR-c5 80 15 20 5 0 29.0 28.5 8.9
IFR-p1 79 20 20 0 1 28.8 25.1 5.1
IFR-p5 75 20 20 0 5 28.8 26.8 5.4
Table 1  Proportion and combustion properties tested by LOI and UL94 of iPP/POE/IFR composites
Sample TTI
(s)
PHRR
(kW/m2)
MHRR
(kW/m2)
MMLR
(g/s)
av-EHC
(MJ/kg)
iPP 69 643.1 345.2 0.07 39.4
iPP/POE 76 663.8 353.9 0.07 40.2
IFR-0 70 344.7 200.0 0.04 37.8
IFR-c1 72 316.0 177.4 0.03 40.2
IFR-c5 73 390.1 210.7 0.04 42.4
IFR-p1 58 240.6 152.9 0.03 38.5
IFR-p5 59 283.0 177.8 0.03 37.5
Table 2  Cone calorimetric data of pure iPP and iPP/POE/IFR composites under a heat flux of 35 kW/m2
Fig.1  HRR (Heat Release Rate) curves for pure iPP and iPP/POE/IFR composite under a heat flux of 35 kW/m2
Fig.2  Macroscopic morphologies of carbon layer after cone calorimetric test

(a) IFR-0; (b) IFR-c1; (c) IFR-p1; (d) IFR-c5; (e) IFR-p5

Fig.3  SEM images of the residue after cone calorimetric test

(a) IFR-0; (b) IFR-c1; (c) IFR-p1; (d) IFR-c5; (e) IFR-p5

Sample TSR
(m2/m2)
av-COY
(kg/kg)
av-CO2Y
(kg/kg)
av-SEA
(m2/kg)
p-COY
(kg/kg)
p-CO2Y
(kg/kg)
p-SEA
(m2/kg)
iPP 1965.7 0.03 2.76 442.3 0.12 11.2 4087.7
iPP/POE 1709.2 0.04 2.83 471.5 0.12 11.5 4257.3
IFR-0 2348.1 0.04 2.45 551.9 0.11 5.7 3934.6
IFR-c1 1861.6 0.03 2.18 380.7 0.09 5.2 3500.0
IFR-c5 2853.4 0.04 2.5 676.5 0.12 6.3 4285.1
IFR-p1 1264.7 0.04 2.22 244.6 0.08 4.3 1429.2
IFR-p5 2044.2 0.04 2.4 486.8 0.10 4.6 2582.0
Table 3  Cone calorimetric smoke data of pure iPP and iPP/POE/IFR composite under a heat flux of 35 kW/m2
Fig.4  SEM images of fractured surface after Izod impact tests (a) IFR-0; (b) IFR-c1; (c) IFR-p1; (d) IFR-c5; (e) IFR-p5. (a-e) lower magnification, (a1-e1) higher magnification
[1] Wang H, Jin J.Research progress of intumescent flame retardant polypropylene and its mechanical modification[J]. Polymer Bulletin, 2015, 7: 17
[1] (王昊, 金静, 膨胀阻燃聚丙烯及其协同力学改性的研究进展[J]. 高分子通报, 2015, 7: 17)
[2] Dasari A, Yu Z Z, Cai G P, et al.Recent developments in the fire retardancy of polymeric materials[J]. Progress in Polymer Science, 2015, 38(9): 1357
[3] Camino G, Costa L, Martinasso G.Intumescent fire-retardant systems[J]. Polymer Degradation & Stability, 1989, 23(4): 359
[4] Enescu D, Frache A, Lavaselli M, et al.Novel phosphorous-nitrogen intumescent flame retardant system its effects on flame retardancy and thermal properties of polypropylene[J]. Polymer Degradation & Stability, 2013, 98(1): 297
[5] Lai X J, Qiu J D, Zeng X R, et al.Progress in phosphorus-nitrogen macromolecular intumescent flame retardants and their application in polypropylene[J]. Polymer Materials Science & Engineering, 2015, 9: 184
[5] (赖学军, 邱杰东, 曾幸荣等. 磷-氮大分子膨胀型阻燃剂及其阻燃聚丙烯的研究进展[J]. 高分子材料科学与工程, 2015, 9: 184)
[6] Galli P, Vecellio G.Technology: driving force behind innovation and growth of polyolefins[J]. Progress in Polymer Science, 2011, 26(8):1287
[7] Tang Y, Hu Y, Li B G, et al.Polypropylene/montmorillonite nanocomposites and intumescent, flame-retardant montmorillonite synergism in polypropylene nanocomposites[J]. Journal of Polymer Science Part A Polymer Chemistry, 2004, 42(23): 6163
[8] Tao S P, Lu Z Q, Xiao P, Research on the high performance of halogen free flame retardant PP[J]. China Plastics Industry, 2012, 40(3): 118
[8] (陶四平, 陆湛泉, 肖鹏. 无卤阻燃聚丙烯高性能化技术研究[J]. 塑料工业, 2012, 40(3): 118)
[9] Mi L, Wang N, Zhang J, et al.Synergistic effect of OMMT/mesoporous MCM-41 on intumescent flame retardant polypropylene[J]. Chinese Journal of Materials Research, 2012, 26(5): 456
[9] (米龙, 王娜, 张静等. 有机蒙脱土/介孔分子筛协同膨胀型阻燃剂阻燃聚丙烯的性能[J]. 材料研究学报, 2012, 26(5): 456
[10] Ren Q, Wan C, Zhang Y, et al.An investigation into synergistic effects of rare earth oxides on intumescent flame retardancy of polypropylene/poly (octylene-co-ethylene) blends[J]. Polymers for Advanced Technologies, 2011, 22(10): 1414
[11] Qiao Z, Tai Q, Song L, et al.Synergistic effects of cerium phosphate and intumescent flame retardant on EPDM/PP composites[J]. Polymers for Advanced Technologies, 2011, 22(12): 2602
[12] Su X Q, Qiao J L, Hua Y Q, et al.Study on the relationship between structure and properties for ternary PP nanocomposites with special “salami” like structure[J]. Acta Polymerica Sinica, 2005, 1: 142
[12] (苏新清, 乔金樑, 华幼卿等. 具有包藏结构的三元聚丙烯纳米复合材料结构与性能关系的研究[J]. 高分子学报, 2005, 1: 142
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!