Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (3): 211-218    DOI: 10.11901/1005.3093.2016.240
ARTICLES Current Issue | Archive | Adv Search |
Properties of Organic/Inorganic Hybrid Coatings Formed on Magnesium Alloy Surface
Zhengyuan GAO1,3(),Xianlong CAO2,Lang LIU4,Yiliu FANG1,Linsheng HU1
1 School of Mechatronics and Automotive Engineering, Chongqing Jiaotong University, Chongqing 400074, China
2 School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
3 Chongqing Academy of Metrology and Quality Inspection, Chongqing, 401121, China
4 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
Cite this article: 

Zhengyuan GAO,Xianlong CAO,Lang LIU,Yiliu FANG,Linsheng HU. Properties of Organic/Inorganic Hybrid Coatings Formed on Magnesium Alloy Surface. Chinese Journal of Materials Research, 2017, 31(3): 211-218.

Download:  HTML  PDF(1215KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Organic/inorganic hybrid coatings were prepared on AZ31 magnesium alloy, which then was characterized by means of scanning electron microscope, scanning probe microscope, electrochemical analyzer, optical microscope and coatings thickness tester in terms of surface morphology, corrosion resistance, adhesion and thickness. While the influence of pH value of organic/inorganic hybrid sol-gel on the properties of organic/inorganic hybrid coating was also investigated. The results show that pH values of organic/inorganic hybrid sol-gel have important effect on the properties of the organic/inorganic hybrid coatings formed on AZ31 magnesium alloy: When pH value is in the range 3~3.5, a smooth and few defects hybrid coating of the thickness of 22 μm can be obtained; When pH value is in the range 2.2~2.8, the hybrid coating became thin and coarse with some big pores; When pH value equals to 3.0, the hybrid coating has good adhesion, highest corrosion potential and minimum corrosion current density (~7.34×10-5 A/cm2). Corrosion inhibition efficiency of the hybrid coating prepared by sol-gel with pH 3.0 could reach ~ 99.7% compared to the blank AZ31 magnesium alloy.

Key words:  materials failure and protection      magnesium alloys      pH value      sol-gel method      corrosion resistance     
Received:  03 May 2016     
Fund: Supported by Scientific and Technological Research Program of Chongqing Municipal Bureau of Quality and Technical Supervision (Nos.CQZJKY2013001 & CQZJKY2014017);Scientific and Technological Research Program of General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China (No.2014QK263);Scientific and Technological Research Program of Nanchuan in Chongqing (No.CX201407);Chongqing Innovation Project of Key Industrial Generic Technology(cstc2016zdcy50002);Chongqing Research Program of Basic Research and Frontier Technology (Nos.CSTC2015JCYJBX0140 & CSTC2015JCYJA50003);Scientific and Technological Research Program of Chongqing Municipal Education Commission (Nos.KJ1401314 & KJ1401310)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.240     OR     https://www.cjmr.org/EN/Y2017/V31/I3/211

Fig.1  Experimental plan
Sample
No.
HAc
(ml)
KH560
(ml)
TEOS
(ml)
H2O
(ml)
EtOH
(ml)
pH
Sp1 0.3 31.05 10.05 12.15 12.23 3.5
Sp2 0.4 31.05 10.05 12.15 12.23 3.3
Sp3 0.5 31.05 10.05 12.15 12.23 3.0
Sp4 0.6 31.05 10.05 12.15 12.23 2.8
Sp5 0.7 31.05 10.05 12.15 12.23 2.5
Sp6 0.8 31.05 10.05 12.15 12.23 2.2
Table 1  Composition and pH value of hybrid Sol system with different glacial acetic acid content
Fig.2  SEM image of hybrid coatings prepared at different pH value on AZ31 Mg alloy
Fig.3  SEM Image of hybrid coating prepared at pH=2.2 on AZ31 Mg alloy
Sample (No.) Test point 1 (μm) Test point 2 (μm) Test point 3 (μm) Average value (μm)
Sp1 14.9 15.3 16.1 15.4
Sp2 20.2 20.4 21.2 20.6
Sp3 21.9 22.1 22.3 22.1
Sp4 20.0 20.6 21.3 20.6
Sp5 19.4 19.9 20.8 20.0
Sp6 16.6 16.8 17.1 16.8
Table 2  Thickness of hybrid coatings prepared at different pH value on AZ31 Mg alloy
Fig.4  OM image of scratch on hybrid coatings prepared on surface of AZ31 Mg alloy for different pH value
Fig.5  Polarization curves of hybrid coating prepared at different pH on AZ31 Mg alloy
Sample
No.
Icorr
/Acm-2
Ecorr
/V
Inhibition efficiency/%
Sp1 7.93×10-4 -1.385 96.9
Sp2 3.12×10-4 -1.361 98.8
Sp3 7.34×10-5 -1.346 99.7
Sp4 2.81×10-3 -1.419 89.1
Sp5 3.38×10-3 -1.427 86.8
Sp6 1.96×10-2 -1.603 23.7
Blank 2.57×10-2 -1.756
Table 3  Electrochemical parameters from polarization curves and corrosion inhibition efficiency of hybrid coatings prepared at different pH value
Sample No. Open circuit potential/V
Sp1 -1.537
Sp2 -1.534
Sp3 -1.527
Sp4 -1.545
Sp5 -1.547
Sp6 -1.552
blank -1.710
Table 4  Open circuit potential of hybrid coatings prepared at different pH value on AZ31 Mg alloy
Fig.6  Open circuit potential-time curves of hybrid coatings prepared at different pH value on AZ31 Mg alloy
[1] Wei Y H, Xu B S.Theory and practice of magnesium alloy corrosion protection [M]. Beijing: Metallurgical Industry Press, 2007: 4
[1] (卫英慧,许并社. 镁合金腐蚀防护的理论与实践[M]. 北京: 冶金工业出版社, 2007: 4)
[2] Xue J F.Corrosion Prevention Technology of Magnesium Alloy[M]. Beijing: Chemical Industrial Press, 2010: 10
[2] (薛俊峰. 镁合金防腐蚀技术[M]. 北京: 化学工业出版社, 2010: 10)
[3] Yan H.New Technology of Metal Surface Treatment [M]. Beijing: Metallurgical Industry Press, 1996: 10
[3] (阎洪. 金属表面处理新技术[M]. 北京: 冶金工业出版社, 1996: 10)
[4] Gao Z Y, Pan F S.Development of fabrication processes and adhesion measurement of functional surface coating on magnesium alloys[J]. Gongneng Cailiao/journal of Functional Materials, 2012, 43(14): 553
[4] (高正源, 潘复生. 镁合金表面功能涂层制备与界面表征技术的研究进展[J]. 功能材料, 2012(12): 1817)
[5] Gao Z, Pan F.Investigation on microstructure and mechanical properties of nano-ceramic coating on AZ31 magnesium alloys[J]. Journal of Chongqing University, 2012, 35(7): 67
[5] (高正源, 潘复生. AZ31镁合金表面纳米陶瓷涂层的组织与力学性能分析[M]. 重庆大学学报, 2012, 35(7): 67)
[6] Gao Z Y, Pan F S, Tang A T, et al.Investigation on corrosion and wear resistance of AZ31 magnesium alloy by single layer nanocrystalline Al2O3 thin film[J]. Journal of Functional Materials, 2013, 44(8): 1069
[6] (高正源, 潘复生, 汤爱涛等. AZ31 镁合金表面纳米 Al2O3 涂层的耐蚀耐磨性能研究[J]. 功能材料, 2013, 44(8): 1069)
[7] Song G L.Corrosion and Protection of Magnesium Alloy [M]. Beijing: Chemical Industrial Press, 2006: 6
[7] (宋光玲. 镁合金腐蚀与防护[M]. 北京: 化学工业出版社, 2006: 6)
[8] Wu B R.Organic-inorganic Hybrid Material and Its Application [M]. Beijing: Chemical Industrial Press, 2005: 5
[8] (吴壁耀, 张超灿. 有机-无机杂化材料及其应用[M]. 北京: 化学工业出版社, 2005: 5)
[9] Guo X H.Effect of Sol Compositions on Corrosion Protection of SNAP Film Coated on Magnesium Alloy[J]. Chinese Journal of Inorganic Chemistry, 2009, 25(7): 1254
[9] (郭兴华, 安茂忠, 杨培霞, 李海先. SNAP溶胶组成对镁合金涂层耐蚀性的影响[J]. 无机化学学报, 2009, 25(7): 1254)
[10] Wang H L.Study on organic inorganic hybrid materials of organic polymer/SiO2[M]. Hefei: Hefei Industry University Press, 2007: 10
[10] (王华林. 有机聚合物/SiO2有机-无机杂化材料的研究[M]. 合肥:合肥工业大学出版社, 2007: 10)
[11] Zheng W T.Thin film materials and thin film technology [M]. Beijing: Chemical Industrial Press, 2007: 1
[11] (郑伟涛. 薄膜材料与薄膜技术[M]. 北京: 化学工业出版社, 2007: 1)
[12] F. Zanotto, V. Grassi, A. Frignani, F. Zucchi.Protection of the AZ31 magnesium alloy with cerium modified silane coatings[J]. Materials Chemistry and Physics, 2011, 129(1-2): 1
[13] Lamaka S V, Montemor M F, Galio A F, et al.Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy[J]. Electrochimica Acta, 2008, 53(14): 4773
[14] Xu B S.Nano-surface-engineering [M]. Beijing: Chemical Industrial Press, 2003: 9
[14] (徐滨士. 纳米表面工程[M]. 北京: 化学工业出版社, 2003: 9)
[15] Wang X H, Sun Y M, Liu S H, et al.Preparation and corrosion characterization of organic-inorganic hybrid coatigns[J]. Corrosion Science & Protection Technology, 2006, 18(4): 292
[15] (王秀华, 孙益民, 刘守华等. 有机-无机杂化涂层制备及耐腐蚀性能研究[J]. 腐蚀科学与防护技术, 2006, 18(4): 292)
[16] Zhou S H.Preparation of PDMS/SiO2 hybrid material and its application in the protection of ancient ivory [D]. Chengdu University of Technology, 2008: 3
[16] (周述慧. PDMS/SiO2杂化材料的制备及其在古象牙保护中的应用[D]. 成都理工大学, 2008: 3)
[17] Huang C Z, Ai X, Hou Z G, et al.Status quo in the research and application of sol-gel method[J]. Materials Review, 1997, 11(3): 8
[17] (黄传真, 艾兴, 侯兴刚等. 溶胶-凝胶法的研究和应用现状[J]. 材料导报, 1997, 11(3): 8)
[18] Bing L. Progress of Organic/Inorganic Hybrid Optical-Functional Materials Prepared by the Sol-Gel Method[J]. Progress in Chemistry, 2005(1): 85
[18] (刘冰,强亮生. 溶胶-凝胶法制备光学杂化功能材料[J]. 化学进展, 2005, 17(1): 85)
[19] Huang J F.The principle and technology of Sol-Gel [M]. Beijing: Chemical Industrial Press, 2005: 9
[19] (黄剑锋. 溶胶-凝胶原理与技术[M]. 北京: 化学工业出版社, 2005: 9)
[20] Gan G.Films Via Sol Gel Technique and it′s Applications[J]. Journal of Kunming University Ofence & Technology, 1997, 22(1): 143
[20] (甘友国, 郭玉忠, 苏云生. 溶胶-凝胶法薄膜制备工艺及其应用[J]. 昆明理工大学学报, 1997, 22(1): 143)
[21] Lin B, Liu H, Zeng W, et al.Study on Surface Structure and Corrosion Resistance of AZ91 Alloy After Injecting Ion[J]. Hot Working Technology, 2010, 39(12): 117
[21] (林波, 刘洪喜, 曾维华等. 离子注入AZ91镁合金表面结构和耐蚀性能研究[J]. 热加工工艺, 2010, 39(12): 117)
[1] LI Pengyu, LIU Zitong, KANG Shumei, CHEN Shanshan. Effect of Plasma Treatment on Performance of Polybutylene Adipate Coating on Biomedical AZ31 Mg-alloy[J]. 材料研究学报, 2023, 37(4): 271-280.
[2] LIAO Hongyu, JIA Yongxin, SU Ruiming, LI Guanglong, QU Yingdong, LI Rongde. Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. 材料研究学报, 2023, 37(4): 264-270.
[3] CHEN Jie, LI Hongying, ZHOU Wenhao, ZHANG Qingxue, TANG Wei, LIU Dan. Effect of Heat Input on Low Temperature Toughness and Corrosion Resistance of Q1100 Steel Welded Joints[J]. 材料研究学报, 2022, 36(8): 617-627.
[4] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[5] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[6] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[7] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[8] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[9] LI Lingmei, HUANG Huizhen, ZHANG Qinghuan, SHUAI Gewang. Effect of P on Properties of Sn-9Zn-0.1S Lead-Free Solder[J]. 材料研究学报, 2021, 35(8): 615-622.
[10] HAO Xinxin, XI Tong, ZHANG Hongzhen, YANG Chunguang, YANG Ke. Effect of Quenching Temperature on Microstructure and Properties of Cu-bearing 5Cr15MoV Martensitic Stainless Steel[J]. 材料研究学报, 2021, 35(12): 933-941.
[11] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[12] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[13] WU Mengjiao, REN Zhaohui, TIAN He, HAN Gaorong. Ferroelectric Polarization Induced Oriented Attachment Growth of PbTiO3 Films and Grain Size Control[J]. 材料研究学报, 2020, 34(9): 650-658.
[14] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[15] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
No Suggested Reading articles found!