Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (12): 955-960    DOI: 10.11901/1005.3093.2016.483
Current Issue | Archive | Adv Search |
Effect of Microstructure of CeO2 Particles on Catalyzing Oxidation of Diesel Particulate Matter
Song YE, Ping SUN(), Junheng LIU, He HUANG
School of Automobile and Traffic Engineering, Jiangsu University, Zhenjiang 212013, China
Cite this article: 

Song YE, Ping SUN, Junheng LIU, He HUANG. Effect of Microstructure of CeO2 Particles on Catalyzing Oxidation of Diesel Particulate Matter. Chinese Journal of Materials Research, 2017, 31(12): 955-960.

Download:  HTML  PDF(2386KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Three type of CeO2 particles was produced by precipitation method. Then the microstructure and oxygen species of CeO2 particles were characterized by means of XRD, nitrogen adsorption, SEM and H2-TPR. While their catalytic activity was evaluated by thermogravimetric analysis(TGA). Results show that the subgrain dimensions of the prepared three types of CeO2 are 8 nm, 11 nm and 20 nm and the corresponding BET surface areas are 89m2/g, 68m2/g and 63m2/grespectively. The pore volumes and diameters of CeO2 particles consistently changed with BET surface areas. In comparison with the plain diesel particulate matter (PM), the ones with addition of CeO2 particles could exhibited higher activity for the oxidation of transitional soot precursor within PM, correspondingly the temperature related with the initial mass-loss of dry soot decreased by 152℃、137℃ and 121℃ and the temperature of the mass-loss peak decreased by 187℃、110℃ and 103℃ respectively, meanwhile the peak mass-loss rate increased. The microstructure of CeO2 particles played a significant role in the formation of oxygen lattice vacancy. In general, CeO2 particles has smaller subgrain size and larger BET surface areas, thus will exhibited better catalytic activity for the oxidation of PM.

Key words:  inorganic non-metallic materials      micro-structure      catalyzing oxidation      thermogravimetric analysis      CeO2      particulate matter     
Received:  15 August 2016     
ZTFLH:  TB321  
  TK421  
Fund: Supported by Natural Science Foundation of Jiangsu Province (No. BK20160538), Natural Science Research Project of Jiangsu Province (No. 14KJA470001)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.483     OR     https://www.cjmr.org/EN/Y2017/V31/I12/955

Fig.1  XRD cruve of CeO2 sample
Fig.2  SEM comparison graphs of CeO2 sample
Sample SBET/m2g-1 V/cm3g-1 D / nm
8 nm 89 0.19 15
11 nm 68 0.09 7.7
20 nm 63 0.07 5.9
Table 1  BET surface areas、pore volumes and diameters of CeO2 sample
Fig.3  H2-TPR curve of CeO2 sample
TSOF TPre Ti Tm
Pure particulate matter 200 / 500 600
20 nm 200 296 379 493
11 nm 199 303 363 490
8 nm 203 307 348 413
Table 2  Mass loss characteristic parameters of diesel particulate matter
Fig.4  TG and DTG curve of different micro-structure CeO2 mixed with particulate matter
[1] Zhang J, Ouyang Z Y, Miao H, et al.Characteristic comparative study of particulate matters in Beijing before and during the Olympics[J]. Environ. Sci., 2013, 34(7): 2512(张菊, 欧阳志云, 苗鸿等. 奥运前期与奥运期间北京市大气细颗粒物特征比较分析[J]. 环境科学, 2013, 34(7): 2512)
[2] Chang S Y, Wu Q W, Yang D X, et al.Combustion characteristics and dynamic analysis of diesel soot[J]. T.CSICE., 2009, 27(3):255(常仕英, 吴庆伟, 杨冬霞等. 柴油车碳烟的燃烧特性及动力学研究[J].内燃机学报, 2009, 27(3): 255)
[3] He H, Weng D, Zi X Y.Diesel emission control technologies: A review[J]. Environ. Sci., 2007, 28(6):1169(贺泓, 翁端, 资新运. 柴油车尾气排放污染控制技术综述[J]. 环境科学, 2007, 28(6): 1169)
[4] Mohr M, Forss A M, Lehmann U.Particle emissions from diesel passenger cars equipped with a particle trap in comparison to other technologies[J]. J. Environ.Sci.Technol., 2006, 40(7): 2375
[5] Bergmann M, Kirchner U, Vogt R, et al.On-road and laboratory investigation of low-level PM emissions of a modern diesel particulate filter equipped diesel passenger car[J]. Atmos. Environ., 2009, 43(11): 1908
[6] Tian L Q, Ye D Q.After-treatment technology of particulate matter from diesel vehicle exhaust[J]. Environ. Poll. Control Tech. Equip., 2003, 4(10): 74(田柳青, 叶代启. 柴油车排气颗粒物的后处理技术[J]. 环境污染治理技术与设备, 2003, 4(10): 74)
[7] Liang P, Zhang G Z, Wang J Q, et al.Latest progress in catalysts for the catalytic combustion of diesel soot particulates[J]. J. Chin. Environ. Eng., 2008, 2(5): 577(梁鹏, 张桂臻, 王季秋等. 柴油车尾气碳烟颗粒物催化燃烧催化剂的最新研究进展[J]. 环境工程学报, 2008, 2(5): 577)
[8] Xu P F.Optimized Control and Properties of cerium oxide micro-nanostructures[D]. Beijing: Universtiy of Science and Technology,2015(徐鹏飞. 氧化铈微纳结构的调控与性能研究[D]. 北京:北京科技大学, 2015)
[9] Benjaram M R, Ataullah K, Pandian L,et al.Structural characterization of nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2, Catalysts by XRD, Raman, and Hrem techniques[J]. Cheminform, 2005, 36(22): 3355
[10] Dhakad M, Mitshuhashi T, Rayalu S, et al.Co3O4-CeO2 mixed oxide-based catalytic materials for diesel soot oxidation[J]. Catal. Today., 2008, 132(1): 188
[11] Kumar P A, Tanwar M D, Russo N, et al.Synthesis and catalytic properties of CeO2, and Co/CeO2, nanofibres for diesel soot combustion[J]. Catal. Today., 2012, 184(1): 279
[12] Liu S K, Sun P, Liu J H, et al.Ce-based fuel borne catalyst enhancing regenerative effect of diesel particulate filter[J]. Trans. CSAE., 2016, 32(1): 112(刘少康, 孙平, 刘军恒等. 铈基燃油催化剂改善柴油机颗粒物捕集器再生效果[J]. 农业工程学报, 2016, 32(1): 112)
[13] Jung H, Kittelson D B, Zachariah M R.The influence of a cerium additive on ultrafine diesel particle emissions and kinetics of oxidation[J]. Combust. Flame., 2005, 142(3): 276
[14] Miró E E, Ravelli F, Ulla M A, et al.Catalytic combustion of diesel soot on Co, K supported catalysts[J]. Catal. Today., 1999, 53(53): 631
[15] Huo X F.Preparation and characterization of La1-xCexMn1-yCoyO3 for Catalytic Combustion of Soot[D]. Tian jing: Tianjing University, 2012(霍晓飞. La1-xCexMn1-yCoyO3系列钙钛矿型催化剂对柴油机颗粒物净化性能研究[D]. 天津大学, 2012)
[16] Qin J, Lu J, Cao M, et al.Synthesis of porous CuO-CeO2 nanospheres with an enhanced low-temperature CO oxidation activity.[J]. Nanoscale, 2010, 2(12): 2739
[17] He X W, Yu J J, Kang S F, et al.Catalytic combustion of soot on combined oxide catalysts[J]. Environ. Sci., 2005, 26(1): 28(何绪文, 於俊杰, 康守方等. 复合氧化物催化材料上碳颗粒物的催化燃烧[J]. 环境科学, 2005, 26(1): 28)
[18] Wang H Y, Chen M, Wu Z K, et al.Dispersion behavior of CeO2 nano-particles in ethanol-water mixed Solution[J]. Rare. Earths., 2014, (3): 64(王宏宇, 程满, 吴志奎等. 纳米氧化铈在醇水混合溶液中的分散行为[J]. 稀土, 2014, (3): 64)
[19] Li J C, Wu T Y.The relationship between imperfection and production process of WC powder[J]. Journal of Central South Institute of Mining and Metallurgy, 1986, (04): 54(李健纯, 吴惕言. 碳化钨粉末的微观结构与工艺参数的关系[J]. 中南矿冶学院学报, 1986, (04): 54)
[20] Guo J L, Li C Y, Hu C F, et al.Structural features of reactive oxygen species, Cerium oxide nanoparticles and their application prospects[J]. Chem.Bull., 2014, 77(2): 146(郭金玲, 李常燕, 胡长峰等. 活性氧和纳米氧化铈的结构特征及其应用前景[J]. 化学通报, 2014, 77(2): 146)
[21] Xu M, Wang L.Value analysis and teaching strategies of effective collision theory to promote the development of students' cognition[J]. Chem. Edu., 2013, 34(1): 6(徐敏, 王磊. 有效碰撞理论对促进学生认识发展的价值分析及其教学策略[J]. 化学教育, 2013, 34(1): 6)
[22] Hong Y X, Liang H, Li S H, et al.Influence of potassium doping into Ce0.7Zr0.3O2 solid solution on active oxygen[J]. J. Chin. Rare. Earths., 2012, 30(4): 429(洪燕霞, 梁红, 李树华等. 钾元素掺杂对铈锆固溶体中氧物种的影响[J]. 中国稀土学报, 2012, 30(4): 429)
[23] Lu G Z, Wang R.TPR research of surface oxygen species for cerium oxide, cupric oxide[J]. Chem Bull., 1993, (10): 35(卢冠忠, 汪仁. 氧化铈, 氧化铜表面氧种的TPR研究[J]. 化学通报, 1993, (10): 35)
[24] Li L, Wang J X, Xiao J H, et al.Particulate emission characteristics of vehicle diesel engine fuelled with palm-oil derived biodiesel[J].Chin. Environ. Sci., 2014, 34(10): 2458(李莉, 王建昕, 肖建华等. 车用柴油机燃用棕榈生物柴油的颗粒物排放特性研究[J]. 中国环境科学, 2014, 34(10): 2458)
[25] Mei D Q, Zhao X, Wang S L, et al.Thermogravimetric characteristics and thermokinetic analysis on PM emission of diesel rngine with catalyst[J]. Chin. Intern. Combust .Engine. Eng., 2013, (S1): 37(梅德清, 赵翔, 王书龙等. 柴油机颗粒物催化状态热重特性及热动力学分析[J]. 内燃机工程, 2013(S1): 37)
[1] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] LI Yanwei, LUO Kang, YAO Jinhuan. Lithium Ions Storage Properties of Ni(OH)2 Anode Materials Prepared with Sodium Dodecyl Sulfate as Accessory Ingredient[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] YU Moxin, ZHANG Shuhai, ZHU Bowen, ZHANG Chen, WANG Xiaoting, BAO Jiamin, WU Xiang. Preparation of Nitrogen-doped Biochar and its Adsorption Capacity for Co2+[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] ZHU Mingxing, DAI Zhonghua. Study on Energy Storage Properties of SrSC0.5Nb0.5O3 Modified BNT-based Lead-free Ceramics[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] ZHOU Yi, TU Qiang, MI Zhonghua. Effect of Preparing Methods on Structure and Properties of Phosphate Glass-ceramics[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] XIE Feng, GUO Jianfeng, WANG Haitao, CHANG Na. Construction of ZnO/CdS/Ag Composite Photocatalyst and Its Catalytic and Antibacterial Performance[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] FANG Xiangming, REN Shuai, RONG Ping, LIU Shuo, GAO Shiyong. Fabrication and Infrared Detection Performance of Ag-modified SnSe Nanotubes[J]. 材料研究学报, 2022, 36(8): 591-596.
[12] LI Fulu, HAN Chunmiao, GAO Jiawang, JIANG Jian, XU Hui, LI Bing. Temperature Dependent Luminescence Properties of Graphene Oxide[J]. 材料研究学报, 2022, 36(8): 597-601.
[13] ZHU Xiaodong, XIA Yangwen, YU Qiang, Yang Daixiong, HE Lili, FENG Wei. Preparation and Characterization of Cu Doped Rutile TiO2 and Photocatalytic Property[J]. 材料研究学报, 2022, 36(8): 635-640.
[14] XIONG Tinghui, CAI Wenhan, MIAO Yu, CHEN Chenlong. Simultaneous Epitaxy Growth and Photoelectrochemical Performance of ZnO Nanorod Arrays and Films[J]. 材料研究学报, 2022, 36(7): 481-488.
[15] CHEN Jingjing, QIU Xiaolin, LI Ke, YUAN Junjun, ZHOU Dan, LIU Yiwei. Microstructure Evolution and Plastic Removal for Single Crystal Nickel Induced by Particle Scratching: Atomic Simulation Method[J]. 材料研究学报, 2022, 36(7): 511-518.
No Suggested Reading articles found!