Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (12): 901-908    DOI: 10.11901/1005.3093.2017.317
Current Issue | Archive | Adv Search |
Synergistic Effects of Novel Intumescent Flame Retardant Polypropylene Composites
Xiang DONG1,2, Zegong LIU1,2(), Shibin NIE1,2, Chi ZHANG1,2, Can ZHOU1,2, Wei WU1,2
1 School of Energy Resources and Safety, Anhui University of Science and Technology, Huainan 232001, China
2. Key Laboratory of Safe and Effective Coal Mining of Ministry of Education, Huainan 232001, China
Cite this article: 

Xiang DONG, Zegong LIU, Shibin NIE, Chi ZHANG, Can ZHOU, Wei WU. Synergistic Effects of Novel Intumescent Flame Retardant Polypropylene Composites. Chinese Journal of Materials Research, 2017, 31(12): 901-908.

Download:  HTML  PDF(2205KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Novel intumescent flame retarding polypropylene based composites were synthesized with silica-gel microencapsulated ammonium polyphosphate (OS-MCAPP) and tris (2-hydrooxyethyl) isocyanurate (THEIC) as intumescent flame retardants, while porous nickel phosphate (VSB-1) or nickel phosphate nanotubes (NiPO-NT) as synergist agent. Results show that with the addition of 4.0% VSB-1 or 3.0% NiPO-NT (in mass fraction), the composites show the optimal LOI value of 34.2, while the peak heat release rate reduced respectively by 40.7% and 38.1% in comparison with that of the composite without synergist. Moreover, these two composites show better thermal stability at 700℃ with residue mass of 207% and 239%, respectively, higher than that of the composite without synergist.

Key words:  composite      synergist      intumscent flame retardant      polypropylene     
Received:  15 May 2017     
ZTFLH:  TQ325  
Fund: Supported by National Natural Science Foundation of China (No. 51474009)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2017.317     OR     https://www.cjmr.org/EN/Y2017/V31/I12/901

Sample PP OS-MCAPP THEIC VSB-1 NiPO-NT
PP0 100
PP1 70 22.5 7.5
PP2 70 21.75 7.25 1.0
PP3 70 21 7 2.0
PP4 70 20.25 6.75 3.0
PP5 70 19.5 6.5 4.0
PP6 70 18.75 6.25 5.0
PP7 70 21.75 7.25 1.0
PP8 70 21 7 2.0
PP9 70 20.25 6.75 3.0
PP10 70 19.5 6.5 4.0
PP11 70 18.75 6.25 5.0
Table 1  Formulations of the PP/IFR/synergist composites (mass fractiom, %)
Fig.1  Effect of the content of synergists on the LOI of novel PP/IFR composites (x% synergists and 30-x% IFR)
Fig.2  HRR (a) and THR (b) curves of PP0, PP1, PP5 and PP9
Fig.3  SPR (a) and TSP (b) curves of PP0, PP1, PP5 and PP9
Fig.4  Curves of the release of CO2 (a) and CO (b) of PP0, PP1, PP5 and PP9
Fig.5  TG (a) and DTG (b) curves of PP0, PP1, PP5 and PP9 at N2
Fig.6  SEM photographs of the outer surface of chars (a) PP1, (b) PP5 and (c) PP9
Fig.7  XPS curves of PP1 (a)、PP5 (b) and PP9 (c)
Sample C1s P2p N1s O1s Ni2p
PP1 78.92 4.21 2.12 14.75
PP5 55.9 8.89 4.69 29.76 0.75
PP9 63.36 8.04 3.88 24.0 0.72
Table 2  Element content (atomic fraction, %) of char residue determined
Fig.8  Main mechanism of VSB-1 and NiPO-NT in novel PP/IFR composites
[1] Wang Z J, Liu Y F, Li J.Regulating effects of nitrogenous bases on the char structure and flame retardancy of polypropylene/intumescent flame retardant composites[J]. Acs. Sustain. Chem. Eng., 2017, 5(3): 2375
[2] Tang W F, Zhang S, Sun J, et al.Effects of surface acid-activated kaolinite on the fire performance of polypropylene composite[J]. Thermochim. Acta., 2017, 1: 648
[3] Wang P J, Hu X P, Liao D J, et al.Dual fire retardant action: the combined gas and condensed phase effects of azo-modified NiZnAl layered double hydroxide on intumescent polypropylene[J]. Ind. Eng. Chem. Res., 2017, 65(4): 920
[4] Tang W F, Song L X, Zhang S, et al.Preparation of thiourea-intercalated kaolinite and its influence on thermostability and flammability of polypropylene composite[J]. J. Mater. Sci., 2017, 52(1): 208
[5] Wang C L, Ding P, Li J.Effect of hierarchically porous char on intumescent flame retardant polypropylene[J]. Acta. Polym. Sin., 2016, 1: 1594
[6] Li X Y, Tang S W, Zhou X Q, et al.Synergistic effect of amino silane functional montmorillonite on intumescent flame-retarded SEBS and its mechanism[J]. J. Appl. Polym. Sci., 2017, 134(24): 44953
[7] Yan H Q, Li N N, Fang Z Q, et al.Application of poly(diphenolic acid-phenyl phosphate)-based layer by layer nanocoating in flameretardant ramie fabrics[J]. J. Appl. Polym. Sci., 2017, 134(20): 44795
[8] Chen Y J, Wang W, Liu Z Q, et al.Synthesis of a novel flame retardant containing phosphazene and triazine groups and its enhanced charring effect in poly(lactic acid) resin[J]. J. Appl. Polym. Sci., 2017, 134(13): 44660
[9] Guo Y C, Chang C C, Halada G, et al.Engineering flame retardant biodegradable polymer nanocomposites and their application in 3D printing[J]. Polym. Degrad. Stabil., 2017, 137: 205
[10] Zhang P K, He Y Z, Tian S Q, et al.Flame retardancy, mechanical, and thermal properties of waterborne polyurethane conjugated with a novel phosphorous-nitrogen intumescent flame retardant[J]. Polym. Composite., 2017, 38(3): 452
[11] Liao S F, Deng C, Huang S C, et al.An efficient halogen-free flame retardant for polyethylene: piperazine-modified ammonium polyphosphates with different structures[J]. Chinese. J. Polym. Sci., 2016, 34(11): 1339
[12] Deng C L, Deng C, Zhao J, et al.Simultaneous improvement in the flame retardancy and water resistance of PP/APP through coating UV-curable pentaerythritol triacrylate onto APP[J]. Chinese. J. Polym. Sci., 2015, 33(2): 203
[13] Jiang Z W, Liu G S.Microencapsulation of ammonium polyphosphate with melamine-formaldehyde-tris(2-hydroxyethyl)isocyanurate resin and its flame retardancy in polypropylene[J]. Rsc. Advances., 2015, 5(107): 88445
[14] Wang B B, Hu shuang, Zhao K M, et al. Preparation of polyurethane microencapsulated expandable graphite, and its application in ethylene vinyl acetate copolymer containing silica-gel microencapsulated ammonium polyphosphate[J]. Ind. Egn. Chem. Res., 2011, 50(20): 11476
[15] Nie S B, Zhang C, Peng C, et al.Study of the synergistic effect of nanoporous nickel phosphates on novel intumescent flame retardant polypropylene composites[J]. J. Spectorsc., 2015: 289298
[16] Wen P Y, Wang X F, Wang B B, et al.One-pot synthesis of a novel s-triazine-based hyperbranched charring foaming agent and its enhancement on flame retardancy and water resistance of polypropylene[J]. Polym. Degrad. Stabil., 2014, 110: 165
[17] Su X Q, Yi Y W, Tao J, et al.Synergistic effect between a novel triazine charring agent and ammonium polyphosphate onflame retardancy and thermal behavior of polypropylene[J]. Polym. Degrad. Stabil., 2014, 105: 12
[18] Ni J X, Chen L J, Zhao K M, et al.Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites[J]. Polym. Adv. Technol., 2011, 22:1824
[19] Yuan S S, Chen W Y, Liu G S.Effects of two kinds of THEIC-based charring agents on flame-retardant properties of polylactide[J]. J. Appl. Polym. Olym. Sci., 2015, 132: 42086
[20] Feng G D, Hu Y, Jia P Y, et al.Influence of a nitrogen-containing oil-based plasticizer on mechanical, thermal stability and fire performance of plasticized poly(vinyl chloride) and study of its mechanism of flame retardancy with Py-GC/MS[J]. Ind. Crop. Rpod., 2015, 77: 883
[21] Pathak R, Kathalewar M, Wazarkar K, et al.Non-isocyanate polyurethane (NIPU) from tris-2-hydroxy ethyl isocyanurate modified fatty acid for coating applications[J]. Prog. Org. Coat., 2015, 89:160
[22] Chen S F, Zhang D H, Cheng X J, et al.Preparation and characterization of a novel hyperbranched polyphosphate ester[J]. Mater. Chem. Phys., 2012, 137(1): 154
[23] Zhang J H, Chen S F, Zhang D H, et al.Hyperbranched polyphosphate ester/diglycidyl ether of bisphenol-a epoxy hybrid resin: preparation, curing, and thermal degradation kinetics[J]. J. Polym. Mater., 2015, 32(2): 127
[24] Gao S, Zhang X, Liu G S.Synthesis of tris(2-hydroxyethyl) isocyanurate homopolymer and its application in intumescentflame retarded polypropylene[J]. J. Appl. Polym. Sci., 2017, 134(13): 44663
[25] Chen W Y, Yuan S S, Sheng Y, et al.Effect of charring agent THEIC on flame retardant properties of polypropylene[J]. J. Appl. Polym. Olym Sci., 2015, 132: 41214
[26] Liu H, Zhong Q, Kong Q H, et al.Synergistic effect of organophilic Fe-montmorillonite on flammability in polypropylene/intumescent flame retardant system[J]. J. Therm. Anal. Calorim., 2014, 117: 693
[27] Ye L, Zhang Y J, Wang S H, et al.Synergistic effects and mechanism of ZnCl2 on intumescent flame-retardant polypropylene[J]. J. Therm. Anal. Calorim., 2014, 117: 1065
[28] Li X, Yang B.Synergistic effects of pentaerythritol phosphate nickel salt (PPNS) with ammonium polyphosphate in flame retardant of polyethylene[J]. J. Therm. Anal. Calorim., 2015, 112: 359
[29] Zhou K Q, Wang B B, Jiang S H, et al.Facile preparation of nickel phosphide (Ni12P5) and synergistic effect with intumescent flame retardants in ethylene-vinyl acetate copolymer[J]. Ind. Eng. Chem. Res., 2013, 52: 6303
[30] Nie S B, Hu Y, Song L, et al.Study on a novel and efficient flame retardant synergist-nanoporous nickel phosphates VSB-1 with intumescent flame retardants in polypropylene[J]. Polym. Adv. Technol., 2008, 19: 489
[31] Dong X, Nie S B, Liu Z G, et al.Study of the synergistic effect of nickel phosphate nanotubes (NiPO-NT) on intumescent flame retardant polypropylene composites[J]. J. Therm. Anal. Calorim., 2016,126(3): 1323
[32] Chen X L, Jiang Y F, Liu J B, et al.Smoke suppression properties of fumed silica on flame-retardant thermoplastic polyurethane based on ammonium polyphosphate[J]. J. Therm. Anal. Calorim., 2015, 120: 1493
[1] PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] LIU Ruifeng, XIAN Yunchang, ZHAO Rui, ZHOU Yinmei, WANG Wenxian. Microstructure and Properties of Titanium Alloy/Stainless Steel Composite Plate Prepared by Spark Plasma Sintering[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] JI Yuchen, LIU Shuhe, ZHANG Tianyu, ZHA Cheng. Research Progress of MXene Used in Lithium Sulfur Battery[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] WANG Wei, XIE Zelei, QU Yishen, CHANG Wenjuan, PENG Yiqing, JIN Jie, WANG Kuaishe. Tribological Properties of Graphene/SiO2 Nanocomposite as Water-based Lubricant Additives[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] ZHANG Tengxin, WANG Han, HAO Yabin, ZHANG Jiangang, SUN Xinyang, ZENG You. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] SHAO Mengmeng, CHEN Zhaoke, XIONG Xiang, ZENG Yi, WANG Duo, WANG Xuhui. Effect of Si2+ Ion Beam Irradiation on Performance of C/C-ZrC-SiC Composites[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] DU Feifei, LI Chao, LI Xianliang, ZHOU Yaoyao, YAN Gengxu, LI Guojian, WANG Qiang. Preparation of TiAlTaN/TaO/WS Composite Coatings by Magnetron Sputtering and their Cutting Properties on Titanium Alloy[J]. 材料研究学报, 2023, 37(4): 301-307.
[8] ZHANG Jinzhong, LIU Xiaoyun, YANG Jianmao, ZHOU Jianfeng, ZHA Liusheng. Preparation and Properties of Temperature-Responsive Janus Nanofibers[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] WANG Gang, DU Leilei, MIAO Ziqiang, QIAN Kaicheng, DU Xiangbowen, DENG Zeting, LI Renhong. Interfacial Properties of Polyamide 6-based Composites Reinforced with Polydopamine Modified Carbon Fiber[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] LIN Shifeng, XU Dongan, ZHUANG Yanxin, ZHANG Haifeng, ZHU Zhengwang. Preparation and Mechanical Properties of TiZr-based Bulk Metallic Glass/TC21 Titanium Alloy Dual-layered Composites[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] MIAO Qi, ZUO Xiaoqing, ZHOU Yun, WANG Yingwu, GUO Lu, WANG Tan, HUANG Bei. Pore Structure, Mechanical and Sound Absorption Performance for Composite Foam of 304 Stainless Steel Fiber/ZL104 Aluminum Alloy[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] ZHANG Kaiyin, WANG Qiuling, XIANG Jun. Microwave Absorption Properties of FeCo/SnO2 Composite Nanofibers[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] ZHOU Cong, ZAN Yuning, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. High Temperature Properties and Strengthening Mechanism of (Al11La3+Al2O3)/Al Composite[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] LUO Yu, CHEN Qiuyun, XUE Lihong, ZHANG Wuxing, YAN Youwei. Preparation of Double-layer Carbon Coated Na3V2(PO4)3 as Cathode Material for Sodium-ion Batteries by Ultrasonic-assisted Solution Combustion and Its Electrochemical Performance[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] LIU Zhihua, YUE Yuanchao, QIU Yifan, BU Xiang, YANG Tao. Preparation of g-C3N4/Ag/BiOBr Composite and Photocatalytic Reduction of Nitrate[J]. 材料研究学报, 2023, 37(10): 781-790.
No Suggested Reading articles found!