Please wait a minute...
Chinese Journal of Materials Research  2017, Vol. 31 Issue (12): 887-893    DOI: 10.11901/1005.3093.2016.447
Current Issue | Archive | Adv Search |
Influence of Carbon Content on Properties of an Ultra-Low Carbon Ti-Bearing Steel for Enameling
Futao DONG1(), Fei XUE2, Linxiu DU3, Xianghua LIU3
1 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063009, China
2 College of Electrical Engineering, North China University of Science and Technology, Tangshan 063009, China
3 State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

Futao DONG, Fei XUE, Linxiu DU, Xianghua LIU. Influence of Carbon Content on Properties of an Ultra-Low Carbon Ti-Bearing Steel for Enameling. Chinese Journal of Materials Research, 2017, 31(12): 887-893.

Download:  HTML  PDF(6831KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of carbon content on microstructure, texture and hydrogen permeation behavior of an ultra-low carbon Ti-bearing steel for enameling was investigated by means of transmission electron microscope (TEM), electron backscattered diffraction (EBSD) test and electrochemical hydrogen permeation experiment. It was found that the strength of the annealed steel sheets increases with the increasing carbon content, but little difference for the n value; the elongation and r value show a trend of decrease with the increase of carbon content; corresponding to the r value, the γ-fiber texture of the annealed steel sheets was weakened gradually with the increase of carbon content. The hydrogen diffusion coefficient, DL decreases with the increasing of carbon content, when carbon content below 0.004%, DL is lower than the critical value, thereby the fish-scaling resistance for the steel sheet cannot be guaranteed for the enameling process.

Key words:  metallic materials      enamel steel      precipitate      texture      fish-scale resistance     
Received:  30 November 2016     
ZTFLH:  TG142  
Fund: Supported by National Natural Science Foundation of China (No. 51501056), Natural Science Foundation of Hebei Province (No. E2016209341), Educational Commission of Hebei Province (No. BJ2014031), Project of Science and Technology of Tangshan (Nos. 14130243B &15130202C), Foundation of North China University of Science and Technology (No. JP201510)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2016.447     OR     https://www.cjmr.org/EN/Y2017/V31/I12/887

Fig.1  Simulated fast continuous annealing process curve and parameters
Steel C Si Mn P S Ti Al N
1 0.0024 0.020 0.25 0.009 0.029 0.10 0.02 0.0037
2 0.0041 0.015 0.26 0.008 0.023 0.09 0.04 0.0034
3 0.0060 0.018 0.27 0.006 0.026 0.11 0.03 0.0042
4 0.0091 0.014 0.26 0.007 0.024 0.09 0.02 0.0043
Table 1  Chemical compositions (mass fraction, %) of investigated steels
Fig.2  Optical micrographs of the investigated steel annealed sheets with different carbon contentv (a) Steel-1, 0.0024%C, (b) Steel-2, 0.0041%C, (c) Steel-3, 0.0060%C, (d) Steel-4, 0.0091%C
Fig.3  SEM micrographs of precipitates and their corresponding EDS spectrums in Steel-3 annealed sheet: (a) TiN+AlN, (b) TiN+TiS, (c) TiS, (d) Ti4C2S2
Fig.4  TEM micrographs of precipitates and their corresponding EDS spectrums in Steel-3 annealed sheet (a) Ti4C2S2, (b) Ti(C, N)
Fig.5  Stress-strain curves along the rolling direction from tension test at room temperature (a) and strength (b) of the investigated steel annealed sheets with different carbon contents
Fig.6  (a) The n values (work-hardening exponent), rm values (average plastic anisotropy ratio) and (b) elongations, A50 of the investigated steel annealed sheets with different carbon contents
Fig.7  ODFs (orientation density function in φ2 =0~90° sections) of the investigated steel annealed sheets with different carbon contents (a) Steel-1, 0.0024%C (b) Steel-2, 0.0041%C (c) Steel-3, 0.0060%C (d) Steel-4, 0.0091%C
Fig.8  Lag time, tL and hydrogen diffusion coefficient, DL of annealed sheets at room temperature
[1] Otsuka T, Tanabe T. Hydrogendiffusion and trapping process around MnS precipitates in α Fe examined by tritium autoradiography[J]. J Alloy. Compd., 2007, 446-447(446): 655
[2] Dong F T, Du L X, Liu X H, et al.Optimization of chemical compositions in low-carbon Al-killed enamel steel produced by ultra-fast continuous annealing[J]. Mater. Charact., 2013, 84(10): 81
[3] Banerjee K, Verma A K, Venugopalan T.Improvement of drawability of titanium-stabilized interstitial-free steel by optimization of process parameters and texture[J]. Metall. Mater. Trans. A, 2008, 39(6): 1410
[4] Liu S, Yu N, Liu L X, et al.Research on ultra-low carbon steel sheet for enameling[J]. Angang Technology, 2009, (1): 25(刘嵩, 于宁, 刘立群等. 冷轧超低碳搪瓷钢板的研究[J]. 鞍钢技术, 2009, (1): 25)
[5] Dong F T, Xue F, Du L X, et al.Promoting Ti4C2S2 strain induced precipitation during asymmetrical hot rolling to improve r value and advantaged texture in Ti-stabilized IF steel[J]. J Alloy. Compd., 2015, 620: 240
[6] Nishimura R, Toba K, Yamakawa K.The development of a ceramic sensor for the prediction of hydrogen attack[J]. Corros. Sci., 1996, 38(4): 611
[7] Ma F R, Li J X, Chu W Y, et al.Research on hydrogen diffusion of enamel steel[J]. J. Chin. Soc. Corros. Prot., 2010, 30(4): 269(马方容, 李金许, 褚武扬等. 搪瓷钢的氢扩散研究[J]. 中国腐蚀与防护学报, 2010, 30(4): 269)
[8] Chen Y X, Chang Q G.Effect of traps on diffusivity of hydrogen in 20 g clean steel[J]. Acta Metallurgica Sinica, 2011, 47(5): 548(陈业新, 常庆刚. 20 g纯净钢中氢陷阱对氢扩散系数的作用[J], 金属学报, 2011, 47(5): 548)
[9] Zhang W L, Liu J R, Huang X Q.Research on fish-scale resistance of cold rolled enamel steel[J]. Wisco Technology, 2013, 51(3): 22(张万灵, 刘建容, 黄先球等. 冷轧搪瓷钢板抗鳞爆性能研究[J], 武钢技术, 2013, 51(3): 22)
[10] Ghosh P, Ghosh C, Ray R K, et al.Precipitation behavior and texture formation at different stages of processing in an interstitial free high strength steel[J], Scripta Mater., 2008, 59(3): 276
[11] Ghosh P, Ray R K, Ghosh C, et al.Comparative study of precipitation behavior and texture formation in continuously annealed Ti and Ti+Nb added interstitial-free high-strength steels[J], Scripta Mater., 2008, 58(11): 939
[12] Wei F G, Tsuzaki K.Quantitative analysis on hydrogen trapping of TiC particles in steel[J], Metall. Mater. Trans. A, 2006, 37(2): 331
[13] Kawakami K, Matsumiya T.Numerical analysis of hydrogen trap state by TiC and V4C3 in bcc-Fe[J]. ISIJ Int., 2012, 52(9): 1693
[14] Takahashi J, Kawakami K, Kobayashi Y, et al.The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography[J], Scripta Mater., 2010, 63(3): 261
[1] MAO Jianjun, FU Tong, PAN Hucheng, TENG Changqing, ZHANG Wei, XIE Dongsheng, WU Lu. Kr Ions Irradiation Damage Behavior of AlNbMoZrB Refractory High-entropy Alloy[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] SONG Lifang, YAN Jiahao, ZHANG Diankang, XUE Cheng, XIA Huiyun, NIU Yanhui. Carbon Dioxide Adsorption Capacity of Alkali-metal Cation Dopped MIL125[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] ZHAO Zhengxiang, LIAO Luhai, XU Fanghong, ZHANG Wei, LI Jingyuan. Hot Deformation Behavior and Microstructue Evolution of Super Austenitic Stainless Steel 24Cr-22Ni-7Mo-0.4N[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] SHAO Hongmei, CUI Yong, XU Wendi, ZHANG Wei, SHEN Xiaoyi, ZHAI Yuchun. Template-free Hydrothermal Preparation and Adsorption Capacity of Hollow Spherical AlOOH[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] XING Dingqin, TU Jian, LUO Sen, ZHOU Zhiming. Effect of Different C Contents on Microstructure and Properties of VCoNi Medium-entropy Alloys[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] OUYANG Kangxin, ZHOU Da, YANG Yufan, ZHANG Lei. Microstructure and Tensile Properties of Mg-Y-Er-Ni Alloy with Long Period Stacking Ordered Phases[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] XU Lijun, ZHENG Ce, FENG Xiaohui, HUANG Qiuyan, LI Yingju, YANG Yuansheng. Effects of Directional Recrystallization on Microstructure and Superelastic Property of Hot-rolled Cu71Al18Mn11 Alloy[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] XIONG Shiqi, LIU Enze, TAN Zheng, NING Likui, TONG Jian, ZHENG Zhi, LI Haiying. Effect of Solution Heat Treatment on Microstructure of DZ125L Superalloy with Low Segregation[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] LIU Jihao, CHI Hongxiao, WU Huibin, MA Dangshen, ZHOU Jian, XU Huixia. Heat Treatment Related Microstructure Evolution and Low Hardness Issue of Spray Forming M3 High Speed Steel[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] YOU Baodong, ZHU Mingwei, YANG Pengju, HE Jie. Research Progress in Preparation of Porous Metal Materials by Alloy Phase Separation[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] REN Fuyan, OUYANG Erming. Photocatalytic Degradation of Tetracycline Hydrochloride by g-C3N4 Modified Bi2O3[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] WANG Hao, CUI Junjun, ZHAO Mingjiu. Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] LIU Mingzhu, FAN Rao, ZHANG Xiaoyu, MA Zeyuan, LIANG Chengyang, CAO Ying, GENG Shitong, LI Ling. Effect of Photoanode Film Thickness of SnO2 as Scattering Layer on the Photovoltaic Performance of Quantum Dot Dye-sensitized Solar Cells[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] QIN Heyong, LI Zhentuan, ZHAO Guangpu, ZHANG Wenyun, ZHANG Xiaomin. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] GUO Fei, ZHENG Chengwu, WANG Pei, LI Dianzhong. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. 材料研究学报, 2023, 37(7): 495-501.
No Suggested Reading articles found!