Please wait a minute...
Chinese Journal of Materials Research  2019, Vol. 33 Issue (10): 771-775    DOI: 10.11901/1005.3093.2019.207
ARTICLES Current Issue | Archive | Adv Search |
Fatigue Properties and Crack Growth Behavior of ML40Cr Steel for 8.8-grade Bolts
WANG Yuanchen1,SONG Zhuman1,LI Rui2,SHI Wenbo3,ZHU Yankun1,ZHANG Guangping1()
1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Zhejiang Huadian Equipment Testing Institute Co. Ltd. , Hangzhou 310015, China
3. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Cite this article: 

WANG Yuanchen,SONG Zhuman,LI Rui,SHI Wenbo,ZHU Yankun,ZHANG Guangping. Fatigue Properties and Crack Growth Behavior of ML40Cr Steel for 8.8-grade Bolts. Chinese Journal of Materials Research, 2019, 33(10): 771-775.

Download:  HTML  PDF(3730KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

ML40Cr steel for 8.8-grade bolts of power transmission towers was selected as research object in this paper. Considering the fatigue reliability of the bolts fastened under different pre-stresses, tension-tension fatigue and symmetric three-point bending experiments were conducted to investigate the fatigue properties and fatigue crack propagation behavior of ML40Cr steel samples, respectively. The experimental results show that the fatigue limits for smooth samples and notched samples of the ML40Cr steel are 263 MPa and 95 MPa, respectively when the 50% of tensile strength was adopted as the mean stress with different stress amplitudes. The effect of the mean stress on the stress-fatigue life (S-N) curve of the ML40Cr steel samples was investigated by the effective stress method and the corresponding fatigue notch sensitivity 0.31 was obtained. According to the results of symmetrical three-point bending tests the Paris formula of ML40Cr steel for 8.8 bolts is fitted as da/dN=10-10?K2.2. Mechanisms of notch fatigue strength and crack growth of the ML40Cr steel for the bolts were also discussed.

Key words:  materials failure and protection      fatigue properties      notch sensitivity      crack growth      grade 8.8 bolts     
Received:  20 April 2019     
ZTFLH:  TM752  
Fund: Zhejiang Science and Technology Project(5211HD180005)

URL: 

https://www.cjmr.org/EN/10.11901/1005.3093.2019.207     OR     https://www.cjmr.org/EN/Y2019/V33/I10/771

CSiMnSPCrMoCuNiFe
0.400.240.580.0070.0090.89<0.030.03<0.3Bal.
Table 1  Chemical composition of 8.8 grade bolt (mass fraction, %)
Fig.1  Dimensions of smooth fatigue specimen (a), notched fatigue specimen (b) and single-edge notched specimen (c) (unit: mm)
Fig.2  Optical image of microstructure
Fig.3  S-N curves of smooth and notched samples
Fig.4  Fatigue fracture of smooth and notched specimens (a) crack initiation region and (b) propagation region of smooth specimen, (c) crack initiation region and (d) propagation region of notched specimen
Fig.5  Relationship of fatigue crack growth rate and stress intensity factor range at the crack tip
Fig.6  Curve of effective stress versus fatigue life
[1] Peng Z F, Liu Z J. A proposal on the choice and quality control of bolts in lattice tower construction [J]. Guangdong Power Transm. Technol., 2009, 11(3): 32
[1] 彭正峰, 刘足健. 浅谈送电线路铁塔螺栓 [J]. 广东输电与变电技术, 2009, 11(3): 32
[2] Tan Q H, Dong T Z, Wu H Y ,et al. Research on utilization of high-strength bolt in the transmission towers [J]. Electr. Power, 2012, 45(5): 39
[2] 谭青海, 董铁柱, 吴海洋等. 高强度螺栓在输电铁塔上的应用 [J]. 中国电力, 2012, 45(5): 39
[3] Jin Y, Sun X F. Study on stress relaxation of bolt metals at elevated temperatures [J]. J. Southwest Jiaotong Univ., 1998, 33(1): 48
[3] 金 尧, 孙训方. 螺栓材料的应力松弛特性研究 [J]. 西南交通大学学报, 1998, 33(1): 48
[4] Ma G, Han Y, Chen X ,et al. Failure analysis of 6.8 grade bolt for transmission towers [J]. Heat Treat. Met., 2011, 36(2): 105
[4] 马 光, 韩 钰, 陈 新等. 输电铁塔用6.8级螺栓断裂失效分析 [J]. 金属热处理, 2011, 36(2): 105
[5] Jiang A H, Chen L, Shi H Q ,et al. Fracture analysis of screw bolt [J]. Hot Work. Technol., 2013, 42(2): 222
[5] 姜爱华, 陈 亮, 师红旗等. 螺栓疲劳断裂失效分析 [J]. 热加工工艺, 2013, 42(2): 222
[6] Chang X Y. Research on loose characteristics of bolted joint used on transmission tower under the action of wind [D]. Baoding: North China Electric Power University, 2015
[6] 常星亚. 风载作用下输电铁塔螺栓连接松动特性研究 [D]. 保定: 华北电力大学, 2015
[7] Zhao Q, Cao J L, Ding J H ,et al. Analysis on fracture of 35CrMo steel bolts [J]. Shanghai Met., 2017, 39(6): 71
[7] 赵 强, 曹佳丽, 丁景焕等. 35CrMo钢螺栓断裂原因分析 [J]. 上海金属, 2017, 39(6): 71
[8] Guo J Q, Xuan F Z, He L. Stress relaxation performance and prediction models for bolt material of 1Cr10NiMoW2VNbN [J]. Nucl. Power Eng., 2008, 29(6): 119
[8] 郭进全, 轩福贞, 何 磊. 螺栓材料1Cr10NiMoW2VNbN的应力松弛行为及预测模型 [J]. 核动力工程, 2008, 29(6): 119
[9] Dong J. Study on stress relaxation performance prediction for steam turbine bolts [J]. J. North China Electr. Power Univ., 2013, 40(1): 84
[9] 董 瑾. 汽轮机螺栓应力松弛行为预测的研究 [J]. 华北电力大学学报(自然科学版), 2013, 40(1): 84
[10] Wang W, Xu H, Ma Y ,et al. Self-loosening mechanism of bolted joints under vibration [J]. J. Vibrat. Shock, 2014, 33(22): 198
[10] 王 崴, 徐 浩, 马 跃等. 振动工况下螺栓连接自松弛机理研究 [J]. 振动与冲击, 2014, 33(22): 198
[11] Wang N, Zhang B. Simulation analysis of the stress relaxation of assembly bolt at room temperature [J]. J. Taiyuan Univ., 2016, 34(4): 6
[11] 王 娜, 张 博. 预紧螺栓常温应力松弛仿真分析 [J]. 太原学院学报, 2016, 34(4): 6
[12] Kong X F, Yan T, Zhou H B. Influence of the pretightening stress on the fatigue life of a bolt used for wind turbine blades [J]. Chin. J. Turbomach., 2017, 59(6): 49
[12] 孔繁晓, 言 婷, 周海波. 预紧力对风电叶片根部螺栓疲劳寿命的影响分析 [J]. 风机技术, 2017, 59(6): 49
[13] Meng W H, Zeng W C, Gu J Q ,et al. Failure Analysis on early fatigue fracture of a 10.9 grade bolt [J]. Phys. Test. Chem. Anal. (Part A: Phys. Test)., 2017, 53: 365
[13] 孟文华, 曾伟传, 顾静青等. 10.9级螺栓早期疲劳断裂失效分析 [J]. 理化检验(物理分册), 2017, 53: 365
[14] Liu X, Wang Y R, Tian A M ,et al. A life prediction method for size effects on notched fatigue [J]. J. Aerosp. Power, 2017, 32: 429
[14] 刘 香, 王延荣, 田爱梅等. 考虑尺寸效应的缺口疲劳寿命预测方法 [J]. 航空动力学报, 2017, 32: 429
[15] Hu C M, Xiang H P. Exploration of structure fatigue life based on notch fatigue life method [J]. Mod. Radar, 2015, 37(9): 86
[15] 胡长明, 向华平. 基于缺口疲劳方法的结构疲劳寿命评估探索 [J]. 现代雷达, 2015, 37(9): 86
[16] Wei A A, Ji X, Li Y B ,et al. Research progress on fatigue life of notched components [J]. Mater. Mech. Eng., 2011, 35(3): 1
[16] 魏安安, 纪 熙, 李艳斌等. 带缺口构件疲劳寿命的研究进展 [J]. 机械工程材料, 2011, 35(3): 1
[17] Shi S L, Wang Z Z, Lin D S. Investigation of the notch fatigue crack initiation and fatigue growth law for the medium carbon steels [J]. J. Gansu Sci., 1997, 9(2): 77
[17] 史生良, 王赞芝, 林德深. 中碳钢缺口疲劳裂纹的萌生及扩展规律的研究 [J]. 甘肃科学学报, 1997, 9(2): 77
[18] Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum [A].Effects of Environment and Complex Load History on Fatigue Life [C]. West Conshohocken, PA: ASTM International, 1970
[19] Suresh S, translated by Wang Z G ,et al. Fatigue of Materials. 2nd ed. [M]. Beijing: National Defense Industry Press, 1999
[19] Suresh S著, 王中光等译. 材料的疲劳. 第2版 [M]. 北京: 国防工业出版社, 1999
[20] Zeng C H, Wu Y S. A study of effect of mean stress on fatigue curve [J]. Acta Mech. Solida Sin., 1982, (1): 71
[20] 曾春华, 伍义生. 平均应力对疲劳曲线的影响 [J]. 固体力学学报, 1982, (1): 71
[1] GAO Wei, LIU Jiangnan, WEI Jingpeng, YAO Yuhong, YANG Wei. Structure and Properties of Cu2O Doped Micro Arc Oxidation Coating on TC4 Titanium Alloy[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] YANG Liuyang, TAN Zhuowei, LI Tongyue, ZHANG Dalei, XING Shaohua, JU Hong. Dynamic Corrosion Behavior of Pipeline Defects Characterized by WBE and EIS Testing Techniques[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] LI Yufeng, ZHANG Nianfei, LIU Lishuang, ZHAO Tiantian, GAO Wenbo, GAO Xiaohui. Preparation of Phosphorus-containing Graphene and Corrosion Resistance of Composite Coating[J]. 材料研究学报, 2022, 36(12): 933-944.
[4] CHEN Yiwen, WANG Cheng, LOU Xia, LI Dingjun, ZHOU Ke, CHEN Minghui, WANG Qunchang, ZHU Shenglong, WANG Fuhui. Protective Performance of a Novel Inorganic Composite Coatings on CB2 Ferritic Heat Resistant Steel at 650℃ in Oxygen Flow with Water Vapor[J]. 材料研究学报, 2021, 35(9): 675-681.
[5] ZHANG Dalei, WEI Enze, JING He, YANG Liuyang, DOU Xiaohui, LI Tongyue. Construction of Super-hydrophobic Structure on Surface of Super Ferritic Stainless Steel B44660 and Its Corrosion Resistance[J]. 材料研究学报, 2021, 35(1): 7-16.
[6] WANG Guanyi, CHE Xin, ZHANG Haoyu, CHEN Lijia. Low-cycle Fatigue Behavior of Al-5.4Zn-2.6Mg-1.4Cu Alloy Sheet[J]. 材料研究学报, 2020, 34(9): 697-704.
[7] HUANG Anran, ZHANG Wei, WANG Xuelin, SHANG Chengjia, FAN Jiajie. Corrosion Behavior of Ferritic Stainless Steel in High Temperature Urea Environment[J]. 材料研究学报, 2020, 34(9): 712-720.
[8] GONG Weiwei, YANG Bingkun, CHEN Yun, HAO Wenkui, WANG Xiaofang, CHEN Hao. In Situ SECM Observation of Corrosion Behavior of Carbon Steel at Defects of Epoxy Coating under AC Current Conditions[J]. 材料研究学报, 2020, 34(7): 545-553.
[9] LIU Xiaoyan, LIU Kuijun, YANG Xirong, WANG Jingzhong, LUO Lei. Fatigue Crack Propagation Behavior of Ultrafine Grained Pure Titanium[J]. 材料研究学报, 2020, 34(6): 417-424.
[10] ZHU Jinyang, TAN Chengtong, BAO Feihu, XU Lining. CO2 Corrosion Behaviour of A Novel Al-containing Low Cr Steel in A Simulated Oilfield Formation Water[J]. 材料研究学报, 2020, 34(6): 443-451.
[11] LIANG Xinlei, LIU Qian, WANG Gang, WANG Zhenyu, HAN En-Hou, WANG Shuai, YI Zuyao, LI Na. Study on Corrosion Resistance and Thermal Insulation Properties of Graphene Oxide Modified Epoxy Thermal Insulation Coating[J]. 材料研究学报, 2020, 34(5): 345-352.
[12] WANG Zhihu,ZHANG Jumei,BAI Lijing,ZHANG Guojun. Effect of Hydrothermal Treatment on Microstructure and Corrosion Resistance of Micro-arc Oxidization Ceramic Layer on AZ31 Mg-alloy[J]. 材料研究学报, 2020, 34(3): 183-190.
[13] SHANG Baihui,MA Yuantai,MENG Meijiang,LI Ying. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. 材料研究学报, 2019, 33(9): 659-665.
[14] YIN Qi,LIU Miaoran,LIU Yuwei,PAN Chen,WANG Zhenyao. Effect of MgCl2 Deposite on Simulated Atmospheric Corrosion of Zn via Wet-dry Altertnating Corrosion Test[J]. 材料研究学报, 2019, 33(9): 705-712.
[15] Zhuman SONG,Rui LI,Miao QIAN,Wenbo SHI,Ke QIAN,Heng MA,Qingyin CHEN,Guangping ZHANG. Optimizing Prestress of Fatigue Property-dominated 8.8-grade Bolts[J]. 材料研究学报, 2019, 33(8): 629-634.
No Suggested Reading articles found!